

Gene prediction (finding)

Pedagogical note on algorithms [i]

- This class is practical with an emphasis on
 - Formulation of a biological problem in terms of bioinformatics approaches/tools
 - Evaluation of the best (set) application(s) / tool(s) / program(s) for any given problem
 - Deployment and execution of those tools to address the problem and do the job
- Not an algorithms course *per se*
- Useful to understand the algorithmic foundations of the various
 - Can inform choice of best applications/tools
 - Can inform parameter choice decisions
 - Can help to monitor behavior and trouble shooting of applications

Pedagogical note on algorithms [ii]

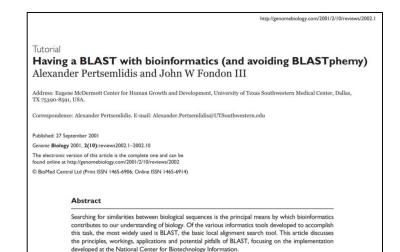
- Ongoing overview of foundational algorithms in bioinformatics
- Previously (genome assembly)
 - Sequence substrings (k-mers)
 - Graph based approaches
- Today (gene prediction)
 - Sequence substring (k-mer) indexing
 - Dynamic programming (alignment)
 - Hidden Markov Models (HMM)
 - Dynamic programming (Viterbialgorithm)

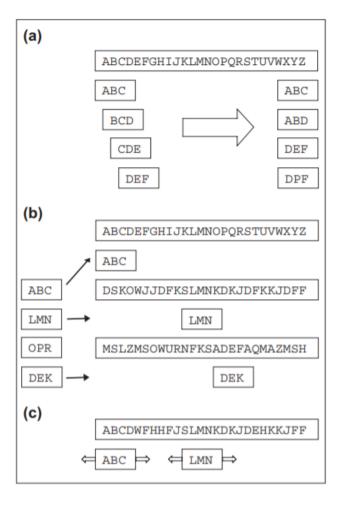
Approaches to gene prediction

- Homology-based methods
 - Find genes via comparison with sequences of know genes
 - Extrinsic information
 - Reliable for what we already know
 - Limited by what we already know (no new knowledge)
 - Can use to validate/support ab initio
- *Ab initio* methods
 - Find genes based on intrinsic characteristics of genome sequence
 - Prior knowledge = differences in sequence composition between protein coding and non-coding sequences
 - Not quite as robust as homology-based methods
 - Opportunity for new knowledge

Homology-based gene prediction with BLAST

- Homology-based methods
 - Find genes via comparison with sequences of know genes
 - Extrinsic information
 - Reliable for what we already know
 - Limited by what we already know (no new knowledge)





Ab initio gene prediction

- Ab initio methods
 - Find genes based on intrinsic characteristics of genome sequence
 - Prior knowledge = differences in sequence composition between protein coding and non-coding sequences
 - Not quite as robust as homology based methods
 - Opportunity for new knowledge

Models and Definitions

- Markov model
 - Stochastic model of a randomly changing system
 - Future state depends only on the current state (not previous states)
 - Critical assumption that facilitates computation (tractable algorithms)
- Hidden Markov Model (HMM)
 - Markov model of a randomly changing system
 - System is made up of unobserved (hidden) states
 - Coding versus non-coding sequences
 - Hidden states 'emit' observed states
 - Observed sequence of DNA residues

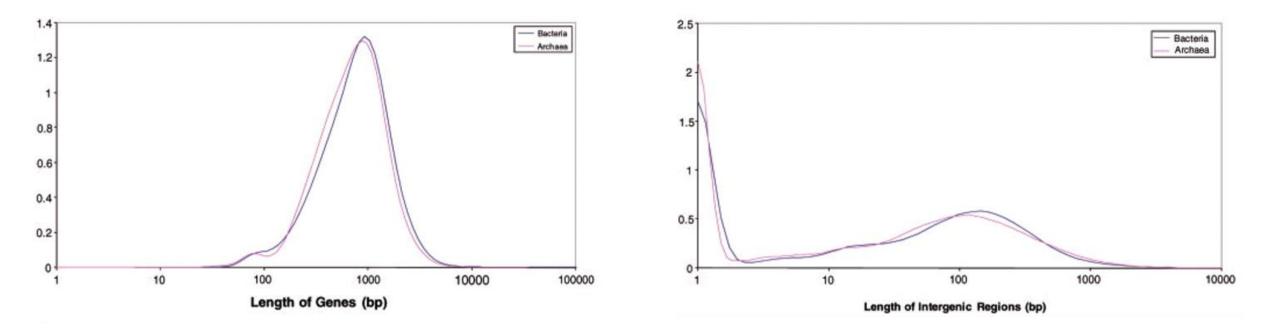
HMMs and Machine Learning

- Machine learning algorithms are presented with *training data* to derive insight about unknown (hidden) parameters in the data
 - More training data generally yields more accurate parameter inferences
 - Parameters = biological knowledge
- Once an algorithm is trained, it can apply these insights to the analysis of *test data*
 - Test data should be different from training data
 - Apply biological knowledge (parameters) with algorithm to new (test) data

Biology of HMMs for gene prediction

- Ab initio gene prediction relies on the use of intrinsic features of genome to find genes (features) in sequence
 - Distinguish protein coding (gene) regions from non-coding regions
- Biological insights underlying these intrinsic features
 - Protein coding sequences (genes) are relatively long sequences interrupted by shorter intergenic regions dispersed along the genome
 - HMM transition probabilities
 - Protein coding sequences have distinct sequence compositions compared to non-coding sequences
 - Owing to the degeneracy of the genetic code
 - HMM emission probabilities

Genic vs. intergenic length distributions



Gene length >> intergenic length

Koonin and Wolf (2008). Nucleic Acids Res. 36: 6688

Genome sequence composition: coding vs. non-coding

- Sequence composition (% GC content) differs across different organisms (species)
- % GC content differs between protein coding (higher) and non-coding (lower) regions
- % GC content differs among different positions of codons
 - Based on composition (availability) of tRNAs

Codon usage database http://www.kazusa.or.jp/codon/

Genetic code

Second letter

		U	С	Α	G		
First letter	υ	$ \begin{array}{c} UUU\\ UUC\\ UUC\\ UUA\\ UUG\\ \\ UUG\\ \end{array} \end{array} \} \begin{array}{c} \text{Phe}\\ \text{Phe}\\ \\ \text{Phe}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	UCAG	
	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG GIn	CGU CGC CGA CGG	UCAG	letter
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGG AGG	UCAG	Third
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAA GAG GIU	GGU GGC GGA GGG	UCAG	

- Code is redundant
- Synonymous codons = different codons (RNA triplets) encoding the same amino acid
- Constraints on overall and codon positionspecific %GC content

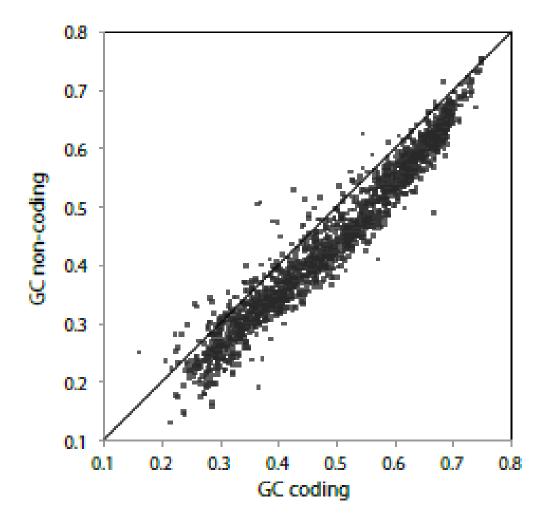
Codon usage

- Synonymous codons are used at different frequencies in different organisms (species)
 - Based on availability (abundance) of specific tRNAs

<i>E. coli</i> Leucine		B. subtilis Leucine	
UUA	13.8%	UUA	19.8%
UUG	13.0%	UUG	15.8%
CUU	11.4%	CUU	21.8%
CUC	10.5%	CUC	10.7%
CUA	3.9%	CUA	4.9%
CUG	51.1%	CUG	23.0%

Codon usage database http://www.kazusa.or.jp/codon/

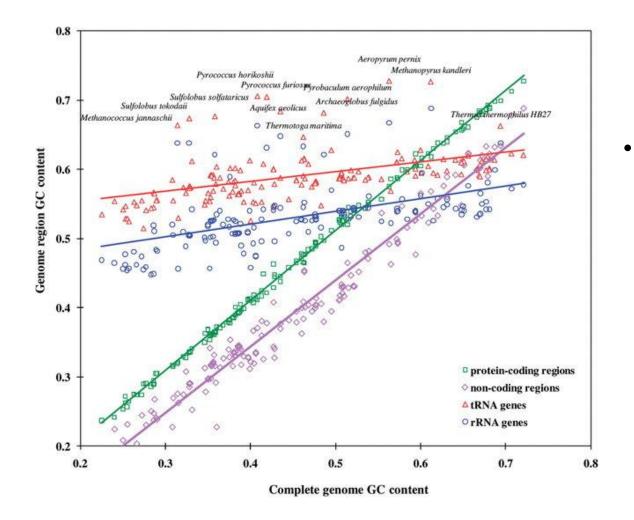
Genome sequence composition: coding vs. non-coding



• GC coding > GC non-coding

Brocchieri (2014) J Phylogenetics Evol Biol 2: e108

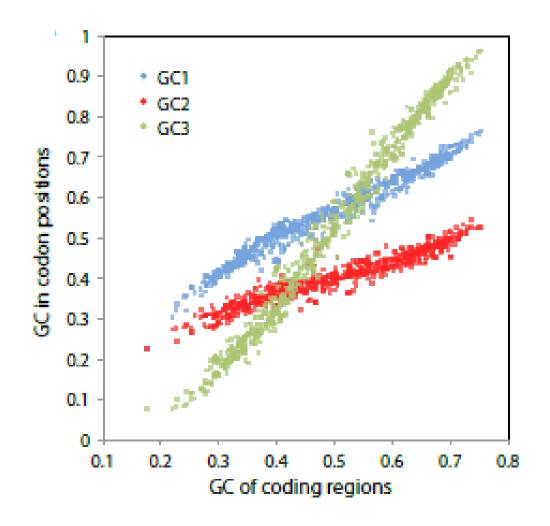
Genome sequence composition: coding vs. non-coding



GC coding > GC non-coding

Zhu et al. (2010) Nucleic Acids Res. 38: e132

Genome sequence composition: codon positions

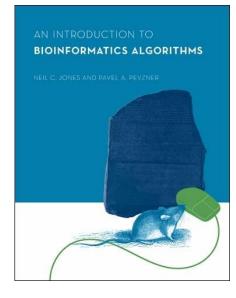


• GC1 \cong GC2 \cong GC3 coding

Brocchieri (2014) J Phylogenetics Evol Biol 2: e108

HMMs for bacterial gene prediction (finding)

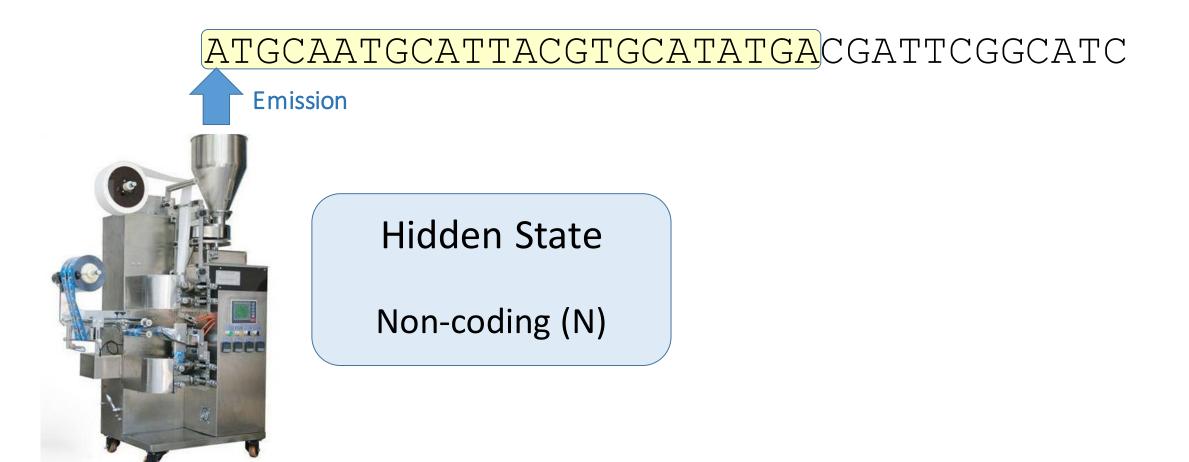
- Gene finding = distinguish protein coding from non-coding regions in a DNA sequence
- 1. Formulate the problem of gene finding in the context of HMMs (evaluation)
- 2. Use biological knowledge to parameterize (train) HMMs (learning)
- 3. Use dynamic programming (Viterbi) algorithm to solve problem (decoding)



HMM as a symbol emitting 'machine'

- HMM is machine that produces output discrete sequence of symbols
- At each step, machine is in one of k hidden states
- At each step, machine decides:
 - 1. What state will I move to next
 - Choose from among *k* hidden states
 - 2. What symbol will emit from that state
 - Choose from an alphabet Σ of symbols

HMM as a symbol (DNA) emitting 'machine'



HMM formal definition

- Σ is an alphabet of symbols; $\Sigma = \{A, T, C, G\}$
- Q is a set of hidden states; $Q = \{Coding (C), Non-coding (N)\}$
- $A = (a_{kl})$ is a matrix describing the probability of changing to state *l* after the HMM is in state *k* (learned from data)
- $E = (e_k(b))$ is a matrix describing the probability of emitting the symbol b when the HMM is in step k (learned from data)

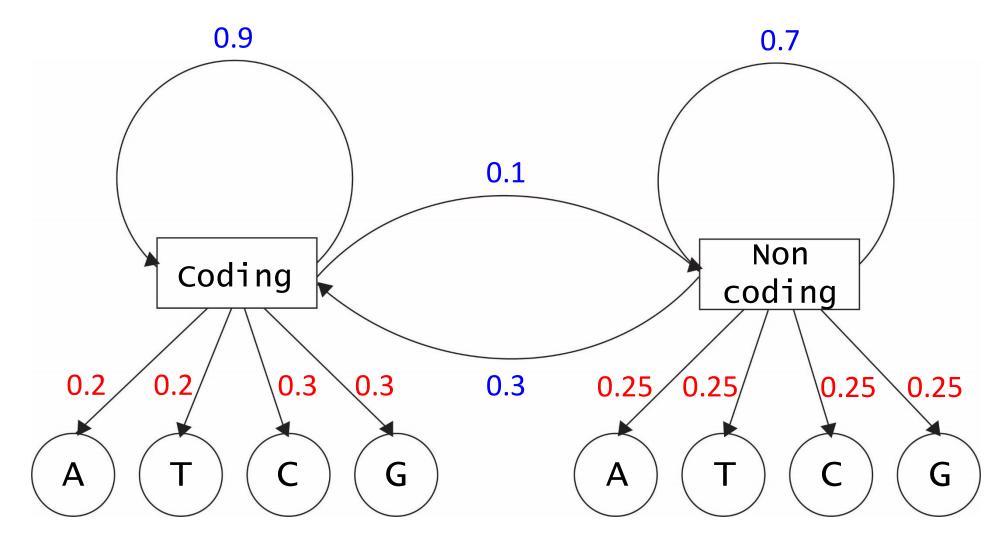
Hidden state transition matrix $A - (a_{kl})$

	Coding (C _/)	Non-coding (NC _/)
Coding (C _k)	0.9	0.1
Non-coding (NC _k)	0.3	0.7

Hidden state emission matrix $E - (e_k(b))$

b	Coding (C _k)	Non-coding (NC _k)
A	0.2	0.25
Т	0.2	0.25
С	0.3	0.25
G	0.3	0.25

HMM for coding vs. non-coding sequence



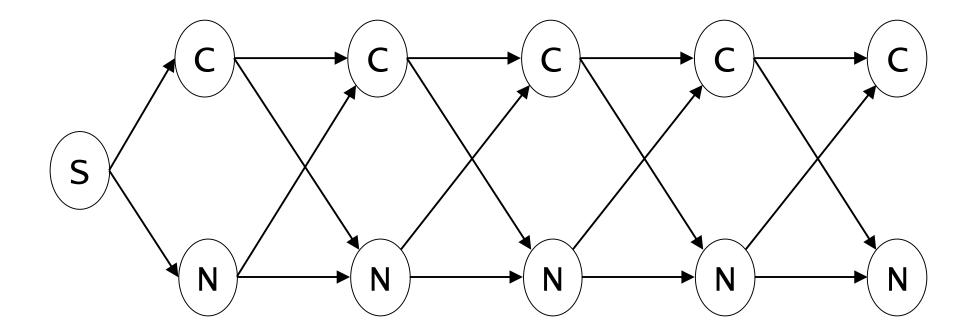
Probability of a path through the HMM given the observed states (evaluating)

 $X = \begin{pmatrix} G & C & A & C & T & A & T & G & G & C \\ \pi & Cd & Cd & Cd & Cd & Nc & Nc & Nc & Cd & Cd & Cd \\ P(x_i|\pi_i) & 0.3 & 0.3 & 0.2 & 0.3 & 0.25 & 0.25 & 0.25 & 0.3 & 0.3 \\ 0.8 & 0.9 & 0.9 & 0.9 & 0.1 & 0.7 & 0.7 & 0.3 & 0.9 & 0.9 \\ = \prod_{i=1}^{n} P(\pi_{i-1} \to \pi_i) P(x_i|\pi_i) \end{pmatrix}$

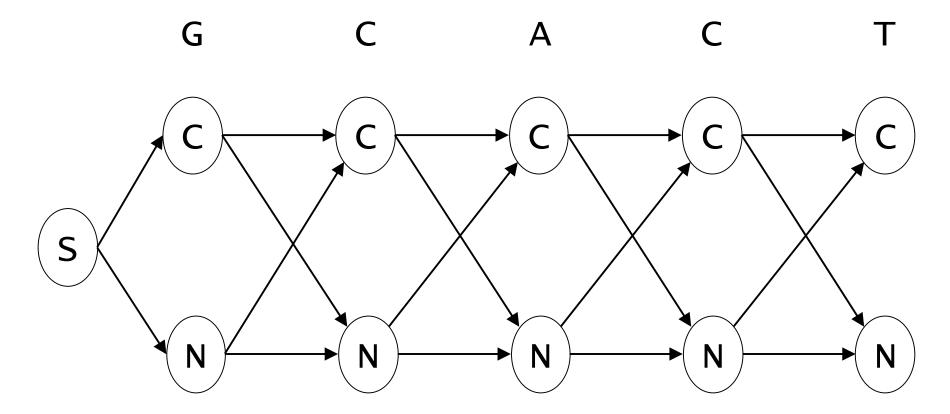
= (0.8*0.3) (0.9*0.3) (0.9*0.2) (0.9*0.3) (0.1*0.25) (0.7*0.25) (0.7*0.25) (0.3*0.3) (0.9*0.3) (0.9*0.3)

Note that log values are used for mathematical simplicity

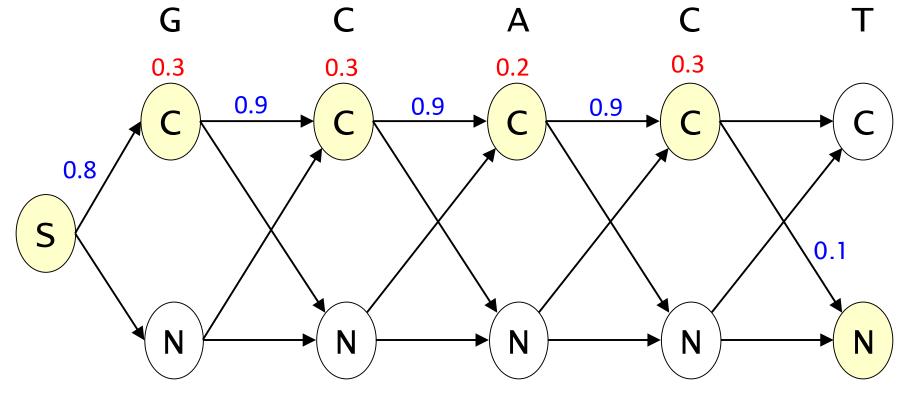
Evaluating the HMM (probability model generated output)



Evaluating the HMM (probability model generated output)



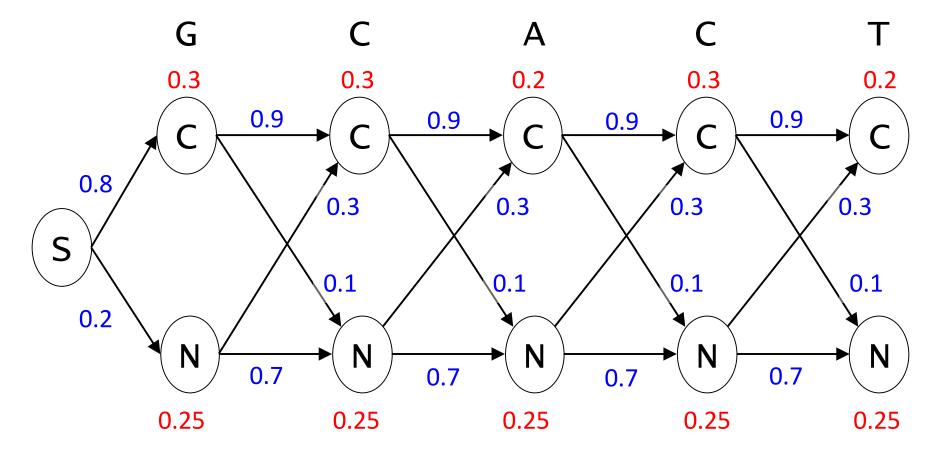
Evaluating the HMM (probability model generated output)



0.25

= (0.8*0.3) (0.9*0.3) (0.9*0.2) (0.9*0.3) (0.1*0.25)

Decoding the HMM (solving for best path) but which is best path ... form 2ⁿ possible paths

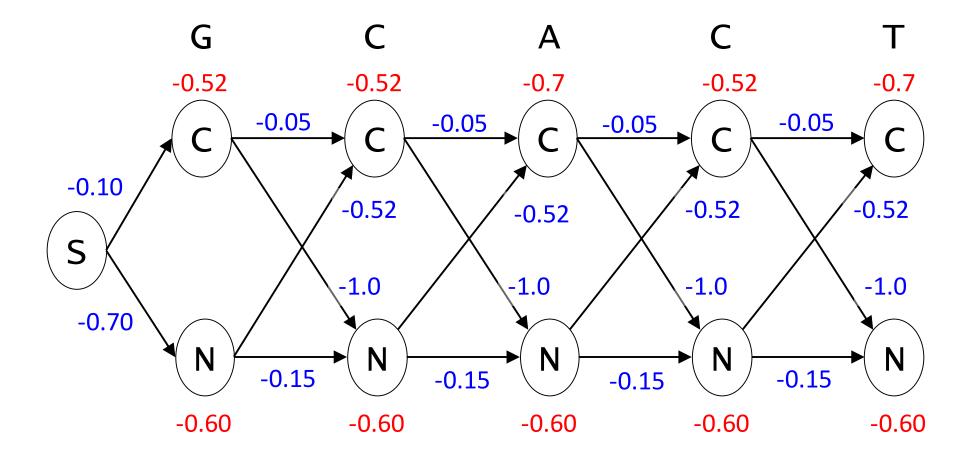


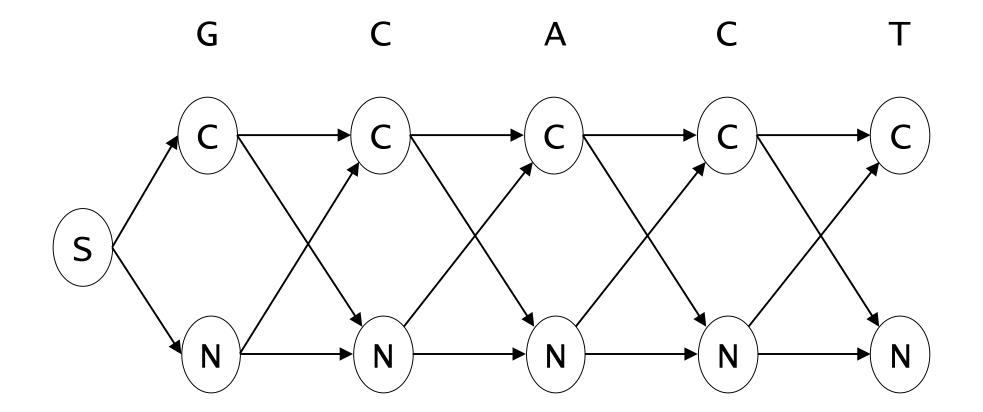
https://www.youtube.com/watch?v=kqSzLo9fenk

log transformation for mathematical convenience

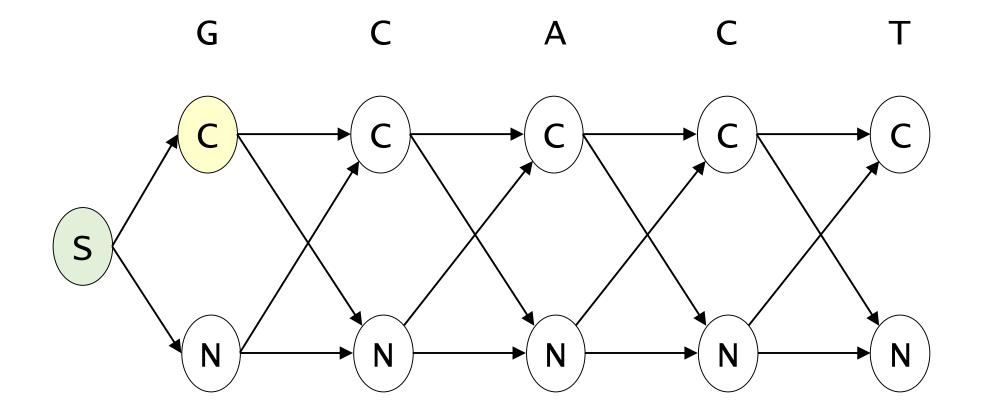
- We are multiplying probabilities (fractions) to get the best path
- Path that maximizes $P(\pi | x)$ over all possible paths π
- This quickly leads to very small fractions and overflow
- log transformed probabilities are used to avoid this problem
- Adding log transformed values is equivalent to multiplying the same values

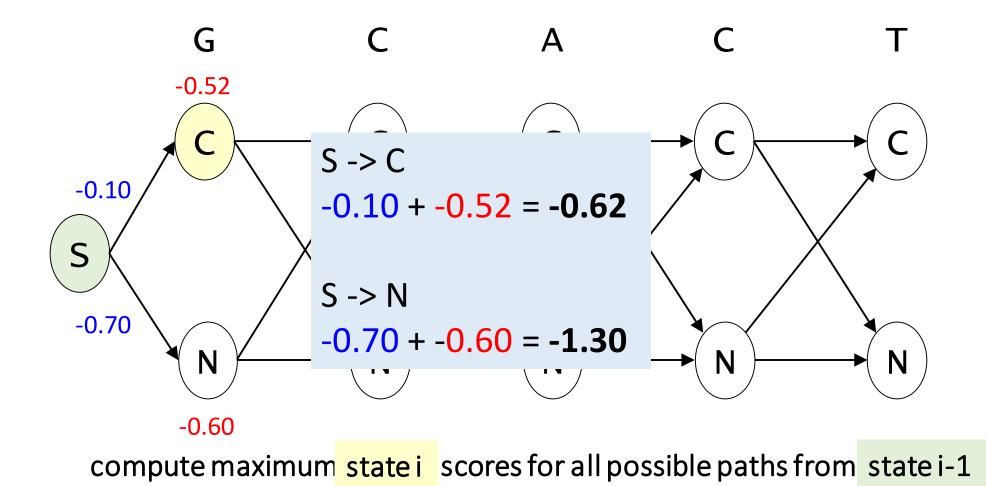
0.8*0.3 = 0.24 $\log_{10}(0.24) = -0.62$ $\log_{10}(0.8) = -0.097$ $\log_{10}(0.3) = -0.52$ -0.097 + -052 = -0.62 Decoding the HMM (solving for best path) but which is best path ... from 2ⁿ possible paths ... log transformed

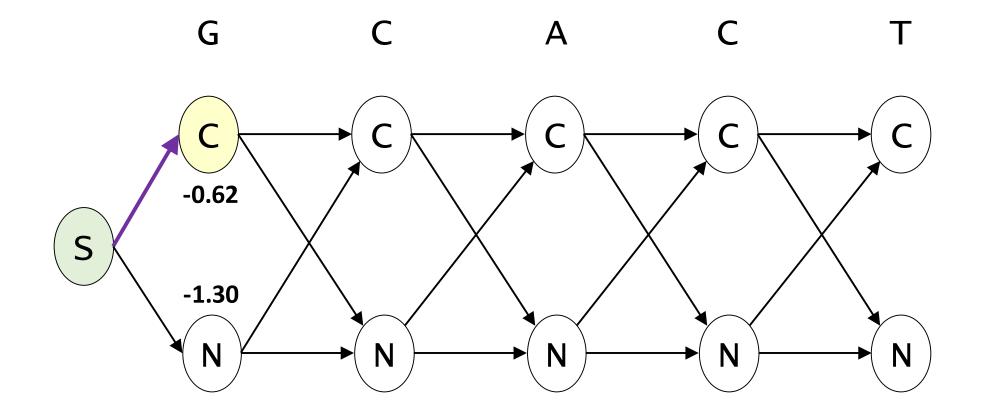


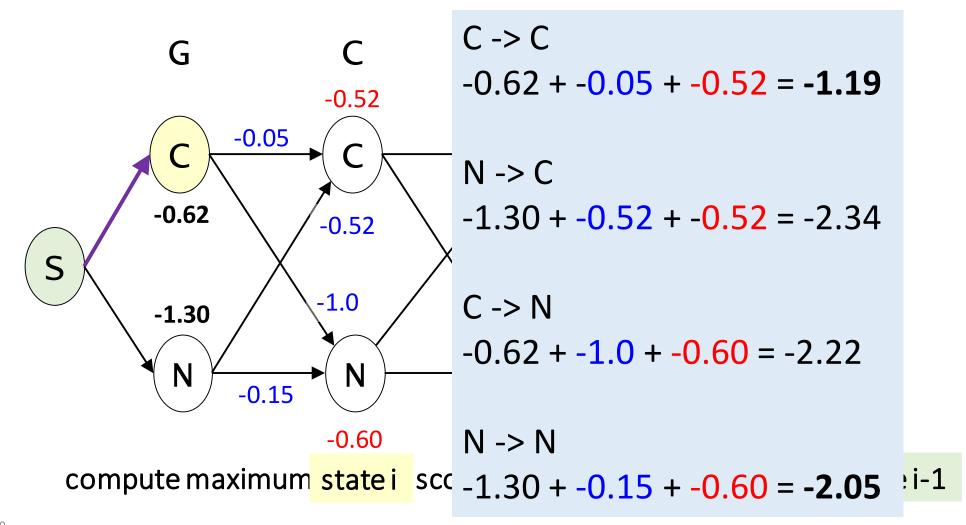


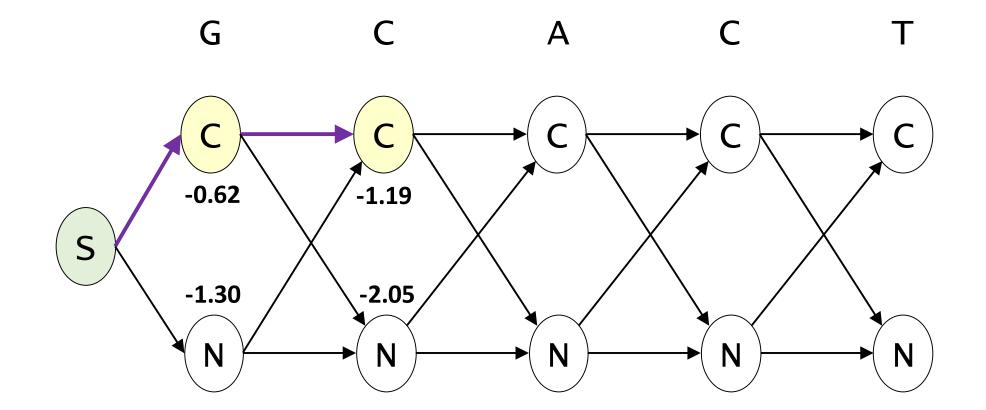
solve each sub-problem (left -> right), then trace best path

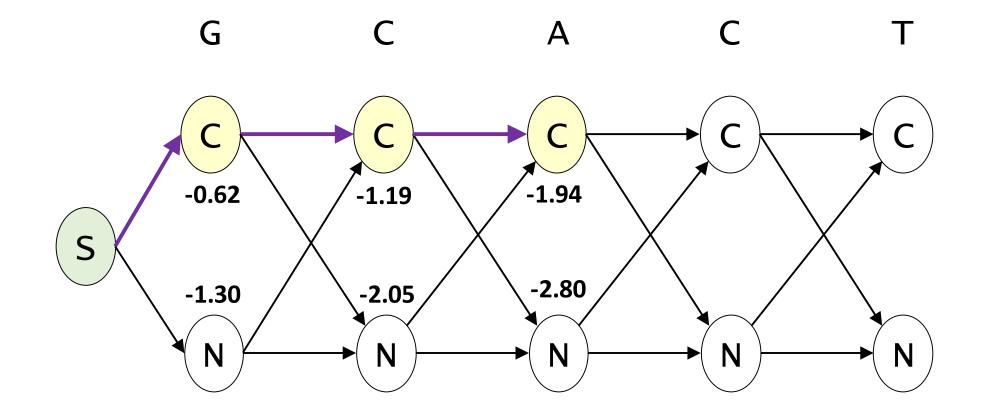


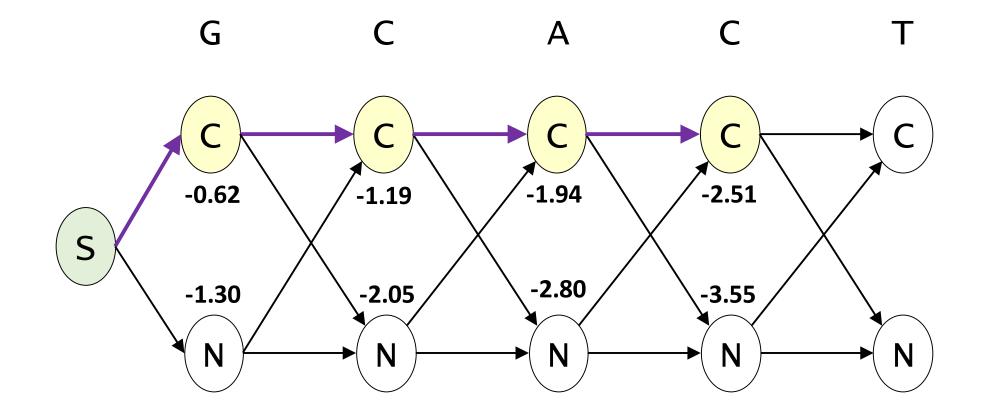


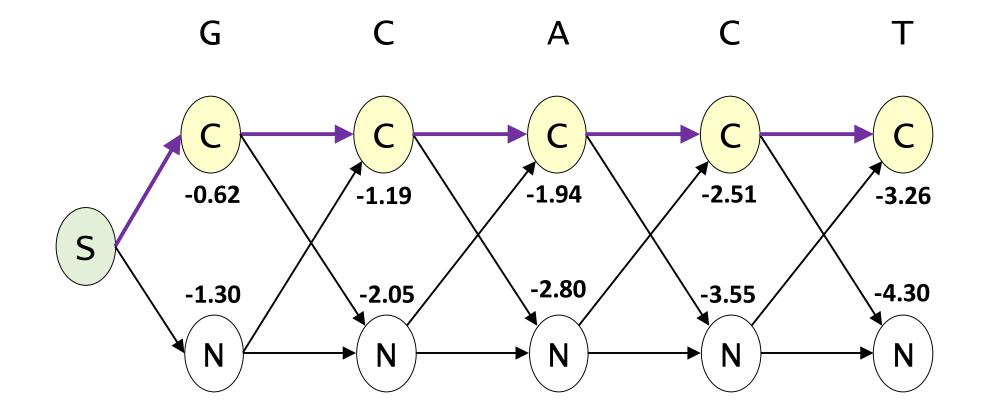




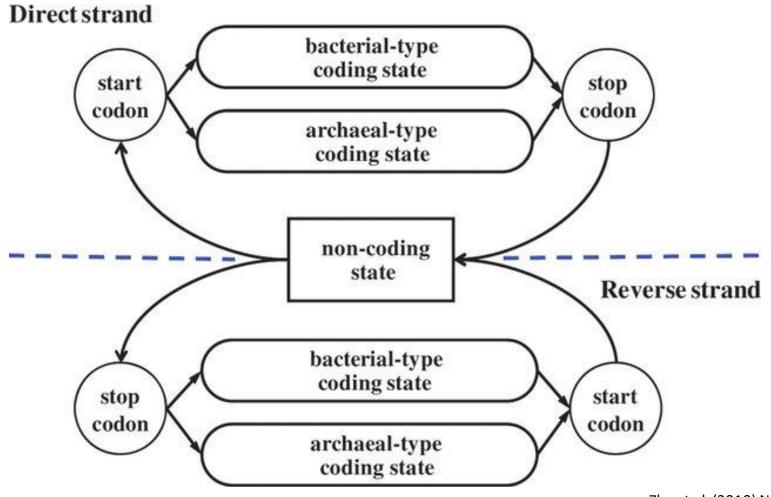








More realistic gene finding HMM



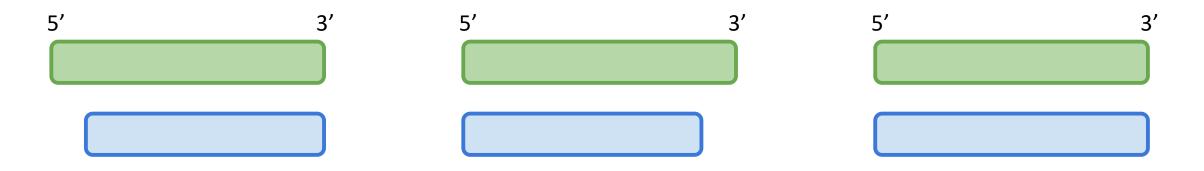
Zhu et al. (2010) Nucleic Acids Res. 38: e132

Additional complexities

- Higher order Markov models kth order model, probability of event based on k previous events (nucleotides)
 - Previous example based on simple 1st order model
- Inhomogenous Markov models changes probabilities based on codon position (captures periodicity of genetic code)
- Interpolated Markov models value of k changes depending on local nucleotide context

Evaluating gene prediction accuracy

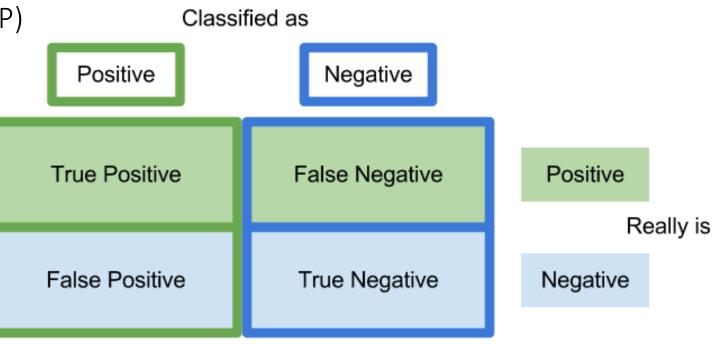
- Overlap measured according to 5' (start) and 3' (stop) site correspondence
- Start sites vary more often than stop sites (results will differ)



Real genes vs. Predicted genes

Evaluating gene prediction accuracy

- Sensitivity (Sn) = TP / (TP + FN)
- Specificity (Sp) = TN / (TN + FP)



https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Additional questions?