
Gene prediction (finding)
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Pedagogical note on algorithms [i]

• This class is practical with an emphasis on 
• Formulation of a biological problem in terms of bioinformatics approaches/tools

• Evaluation of the best (set) application(s) / tool(s) / program(s) for any given problem

• Deployment and execution of those tools to address the problem and do the job

• Not an algorithms course per se

• Useful to understand the algorithmic foundations of the various
• Can inform choice of best applications/tools

• Can inform parameter choice decisions
• Can help to monitor behavior and trouble shooting of applications
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Pedagogical note on algorithms [ii]

• Ongoing overview of foundational algorithms in bioinformatics

• Previously (genome assembly)
• Sequence substrings (k-mers)

• Graph based approaches

• Today (gene prediction)
• Sequence substring (k-mer) indexing

• Dynamic programming (alignment)

• Hidden Markov Models (HMM)
• Dynamic programming (Viterbi algorithm)
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Approaches to gene prediction

• Homology-based methods
• Find genes via comparison with sequences of know genes
• Extrinsic information
• Reliable for what we already know
• Limited by what we already know (no new knowledge)
• Can use to validate/support ab initio

• Ab initio methods
• Find genes based on intrinsic characteristics of genome sequence
• Prior knowledge = differences in sequence composition between protein coding and non-coding 

sequences
• Not quite as robust as homology-based methods
• Opportunity for new knowledge
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Homology-based gene prediction with BLAST

• Homology-based methods
• Find genes via comparison with sequences of know genes

• Extrinsic information

• Reliable for what we already know

• Limited by what we already know (no new knowledge)
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Ab initio gene prediction

• Ab initio methods
• Find genes based on intrinsic characteristics of genome sequence

• Prior knowledge = differences in sequence composition between protein coding and non-coding 
sequences

• Not quite as robust as homology based methods

• Opportunity for new knowledge
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Models and Definitions

• Markov model
• Stochastic model of a randomly changing system

• Future state depends only on the current state (not previous states)

• Critical assumption that facilitates computation (tractable algorithms)

• Hidden Markov Model (HMM)
• Markov model of a randomly changing system

• System is made up of unobserved (hidden) states
• Coding versus non-coding sequences

• Hidden states ‘emit’ observed states
• Observed sequence of DNA residues

January 30, 2020 7



HMMs and Machine Learning

• Machine learning algorithms are presented with training data to derive insight 
about unknown (hidden) parameters in the data
• More training data generally yields more accurate parameter inferences

• Parameters = biological knowledge

• Once an algorithm is trained, it can apply these insights to the analysis of test data
• Test data should be different from training data
• Apply biological knowledge (parameters) with algorithm to new (test) data
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Biology of HMMs for gene prediction

• Ab initio gene prediction relies on the use of intrinsic features of genome to find 
genes (features) in sequence
• Distinguish protein coding (gene) regions from non-coding regions

• Biological insights underlying these intrinsic features
• Protein coding sequences (genes) are relatively long sequences interrupted by shorter intergenic 

regions dispersed along the genome
• HMM transition probabilities

• Protein coding sequences have distinct sequence compositions compared to non-coding 
sequences
• Owing to the degeneracy of the genetic code

• HMM emission probabilities
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Genic vs. intergenic length distributions
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Koonin and Wolf (2008). Nucleic Acids Res. 36: 6688

Gene length >> intergenic length



Genome sequence composition: coding vs. non-coding

• Sequence composition (% GC content) differs across different organisms (species)

• % GC content differs between protein coding (higher) and non-coding (lower) 
regions

• % GC content differs among different positions of codons
• Based on composition (availability) of tRNAs
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Codon usage database
http://www.kazusa.or.jp/codon/



Genetic code
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• Code is redundant

• Synonymous codons = 
different codons (RNA 
triplets) encoding the 
same amino acid

• Constraints on overall 
and codon position-
specific %GC content



Codon usage

• Synonymous codons are used at different frequencies in different organisms 
(species)
• Based on availability (abundance) of specific tRNAs
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E. coli Leucine

UUA 13.8%
UUG 13.0%
CUU 11.4%
CUC 10.5%
CUA  3.9%
CUG 51.1% Codon usage database

http://www.kazusa.or.jp/codon/

B. subtilis Leucine

UUA 19.8%
UUG 15.8%
CUU 21.8%
CUC 10.7%
CUA  4.9%
CUG 23.0%



Genome sequence composition: coding vs. non-coding
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• GC coding > GC non-coding

Brocchieri (2014) J Phylogenetics Evol Biol 2: e108



Genome sequence composition: coding vs. non-coding
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• GC coding > GC non-coding

Zhu et al. (2010) Nucleic Acids Res. 38: e132



Genome sequence composition: codon positions
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• GC1  GC2 GC3 coding

Brocchieri (2014) J Phylogenetics Evol Biol 2: e108



HMMs for bacterial gene prediction (finding)

• Gene finding = distinguish protein coding from non-coding regions 
in a DNA sequence

1. Formulate the problem of gene finding in the context of HMMs 
(evaluation)

2. Use biological knowledge to parameterize (train) HMMs 
(learning)

3. Use dynamic programming (Viterbi) algorithm to solve problem 
(decoding)
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HMM as a symbol emitting ‘machine’

• HMM is machine that produces output – discrete sequence of symbols

• At each step, machine is in one of k hidden states

• At each step, machine decides:

1. What state will I move to next
• Choose from among k hidden states

2. What symbol will emit from that state
• Choose from an alphabet  of symbols

January 30, 2020 18



Hidden State

Coding (C)Non-coding (N)

HMM as a symbol (DNA) emitting ‘machine’
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Emission

ATGCAATGCATTACGTGCATATGACGATTCGGCATC



HMM formal definition

•  is an alphabet of symbols;  = {A, T, C, G}

• Q is a set of hidden states; Q = {Coding (C), Non-coding (N)}

• A = (akl) is a matrix describing the probability of changing to state l after the HMM 
is in state k     (learned from data)

• E = (ek(b)) is a matrix describing the probability of emitting the symbol b when the 
HMM is in step k   (learned from data)
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Hidden state transition matrix A - (akl) 

Coding (Cl) Non-coding (NCl)

Coding (Ck) 0.9 0.1

Non-coding (NCk) 0.3 0.7
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Hidden state emission matrix E - (ek(b))

b Coding (Ck) Non-coding (NCk)

A 0.2 0.25

T 0.2 0.25

C 0.3 0.25

G 0.3 0.25
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HMM for coding vs. non-coding sequence

January 30, 2020 23

Coding
Non

coding

A T C G A T C G

0.9 0.7

0.3

0.1

0.30.30.20.2 0.250.250.250.25



Probability of a path through the HMM given the 
observed states (evaluating)

x G   C   A   C   T   A   T   G   G C

 Cd  Cd Cd Cd Nc Nc Nc Cd  Cd Cd

P (xi|i) 0.3           0.3         0.2          0.3       0.25        0.25      0.25         0.3         0.3          0.3

P (i -1 →i)    0.8        0.9          0.9          0.9         0.1          0.7          0.7         0.3         0.9          0.9

= ς𝑖=1
𝑛 𝑃 𝜋𝑖−1 → 𝜋𝑖 𝑃(𝑥𝑖|𝜋𝑖)

= (0.8*0.3) (0.9*0.3) (0.9*0.2) (0.9*0.3) (0.1*0.25) (0.7*0.25) (0.7*0.25) (0.3*0.3) (0.9*0.3) (0.9*0.3)

Note that log values are used for mathematical simplicity
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Evaluating the HMM (probability model generated 
output)
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C C CC C

N N NN N

S
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G C A C T

C C CC C

N N NN N

S

Evaluating the HMM (probability model generated 
output)
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G C A C T

C C CC C

N N NN N

S

0.8

0.9 0.9 0.9

0.1

0.3 0.3 0.2 0.3

0.25

= (0.8*0.3) (0.9*0.3) (0.9*0.2) (0.9*0.3) (0.1*0.25)

Evaluating the HMM (probability model generated 
output)



Decoding the HMM (solving for best path)
but which is best path … form 2n possible paths
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G C A C T

C C CC C

N N NN N

S

0.8

0.9 0.9 0.9

0.3 0.3 0.2 0.3

0.25

0.2

0.9

0.7 0.7 0.7 0.7

0.3

0.2

0.25 0.25 0.25 0.25

0.3 0.3 0.3

0.1 0.1 0.1 0.1

https://www.youtube.com/watch?v=kqSzLo9fenk



log transformation for mathematical convenience

• We are multiplying probabilities (fractions) to get the best path

• Path that maximizes P(|x) over all possible paths 

• This quickly leads to very small fractions and overflow

• log transformed probabilities are used to avoid this problem

• Adding log transformed values is equivalent to multiplying the same values

0.8*0.3 = 0.24    log10(0.24) = -0.62

log10(0.8) = -0.097    log10(0.3) = -0.52    -0.097 + -052 = -0.62    
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Decoding the HMM (solving for best path)
but which is best path … from 2n possible paths … log transformed
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G C A C T

C C CC C

N N NN N

S

-0.10

-0.05 -0.05 -0.05

-0.52 -0.52 -0.7 -0.52

-0.60

-0.70

-0.05

-0.15 -0.15 -0.15 -0.15

-0.52

-0.7

-0.60 -0.60 -0.60 -0.60

-0.52 -0.52 -0.52

-1.0 -1.0 -1.0 -1.0



Dynamic programming with Viterbi algorithm
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G C A C T

C C CC C

N N NN N

S

solve each sub-problem (left -> right), then trace best path



Dynamic programming with Viterbi algorithm
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G C A C T

C C CC C

N N NN N

S

compute maximum  state i  scores for all possible paths fromstate i state i-1 



Dynamic programming with Viterbi algorithm

January 30, 2020 33

G C A C T

C C CC C

N N NN N

S

compute maximum  state i  scores for all possible paths fromstate i state i-1 

S -> C
-0.10 + -0.52 = -0.62

S -> N
-0.70 + -0.60 = -1.30

-0.10

-0.52

-0.70

-0.60



Dynamic programming with Viterbi algorithm
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G C A C T

C C CC C

N N NN N

S

compute maximum  state i  scores for all possible paths fromstate i state i-1 

-0.62

-1.30



Dynamic programming with Viterbi algorithm
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G C A C T

C C CC C

N N NN N

S

compute maximum  state i  scores for all possible paths fromstate i state i-1 

-0.62

-1.30

C -> C
-0.62 + -0.05 + -0.52 = -1.19 

N -> C
-1.30 + -0.52 + -0.52 = -2.34

C -> N
-0.62 + -1.0 + -0.60 = -2.22

N -> N
-1.30 + -0.15 + -0.60 = -2.05

-0.05

-0.52

-0.15

-0.52

-0.60

-1.0



Dynamic programming with Viterbi algorithm
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G C A C T

C C CC C

N N NN N

S

compute maximum  state i  scores for all possible paths fromstate i state i-1 

-0.62

-1.30

-1.19

-2.05



Dynamic programming with Viterbi algorithm
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G C A C T

C C CC C

N N NN N

S

compute maximum  state i  scores for all possible paths fromstate i state i-1 

-0.62

-1.30

-1.19

-2.05

-1.94

-2.80



Dynamic programming with Viterbi algorithm
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G C A C T

C C CC C

N N NN N

S

compute maximum  state i  scores for all possible paths fromstate i state i-1 

-0.62

-1.30

-1.19

-2.05

-1.94

-3.55

-2.51

-2.80



Dynamic programming with Viterbi algorithm
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G C A C T

C C CC C

N N NN N

S

compute maximum  state i  scores for all possible paths fromstate i state i-1 

-0.62

-1.30

-1.19

-2.05

-1.94

-3.55

-2.51 -3.26

-4.30-2.80



More realistic gene finding HMM
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Zhu et al. (2010) Nucleic Acids Res. 38: e132



Additional complexities

• Higher order Markov models – kth order model, probability of event based on k 
previous events (nucleotides)
• Previous example based on simple 1st order model

• Inhomogenous Markov models – changes probabilities based on codon position 
(captures periodicity of genetic code)

• Interpolated Markov models – value of k changes depending on local nucleotide 
context 
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Evaluating gene prediction accuracy
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Real genes vs. Predicted genes

5’ 3’ 5’ 3’ 5’ 3’

• Overlap measured according to 5’ (start) and 3’ (stop) site correspondence

• Start sites vary more often than stop sites (results will differ)



Evaluating gene prediction accuracy

January 30, 2020 43

• Sensitivity (Sn) = TP / (TP + FN)

• Specificity (Sp) = TN / (TN + FP)

https://en.wikipedia.org/wiki/Sensitivity_and_specificity



Additional questions?
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