Georgia Tech

CREATING THE NEXT

What it is What is known How we can fight What is new/unusual Recommendations

Google maps like view Reports Outbreak

#### Comparative Genomics of Fire Assentive Listeria monocytogenes

Swetha Singu Ruize Yang Deepali Kundnani Gulay Bengu Ulukaya Yuhua Zhang Jie Zhou

#### Listeria monocytogenes - Characteristics

| <u>Listeria Sensu stricto</u><br>- Clade 1 - 6 species       | Organism infected         |
|--------------------------------------------------------------|---------------------------|
| L.monocytogenes                                              | human pathogen            |
| L.ivanovii                                                   | animal pathogen           |
| L.marthii                                                    | symptom free<br>animals   |
| L.innocua                                                    | symptom free<br>animals   |
| L.weshimeri                                                  | symptom free<br>animals   |
| L.seeligeri                                                  | symptom free<br>animals   |
| <u>Listeria sensu lato  -</u><br><u>Clade 2 - 11 species</u> | Organism infected         |
| 11 species                                                   | environmental<br>bacteria |

|                                                                                                                                                                                   | Listeria monocytogenes |                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------|
| Featureshardy organismEvolutionary<br>lineages4Serotypes14 [1/2a, 1/2b, 1/2c,<br>3a, 3b, 3c, 4a, 4b, 4c,<br>4d, 4e, and 7]Major serotypes1/2a [Lineage II]<br>1/2b,4b [Lineage I] | Туре                   | Gram positive                                                      |
| Evolutionary<br>lineages4Serotypes14 [1/2a, 1/2b, 1/2c,<br>3a, 3b, 3c, 4a, 4b, 4c,<br>4d, 4e, and 7]Major serotypes1/2a [Lineage II]<br>1/2b,4b [Lineage I]                       | Infections caused      | Listeriosis                                                        |
| lineages4Serotypes14 [1/2a, 1/2b, 1/2c,<br>3a, 3b, 3c, 4a, 4b, 4c,<br>4d, 4e, and 7]Major serotypes1/2a [Lineage II]<br>1/2b,4b [Lineage I]                                       | Features               | hardy organism                                                     |
| Serotypes3a, 3b, 3c, 4a, 4b, 4c4d, 4e, and 7]Major serotypes1/2a [Lineage II]1/2b,4b [Lineage I]                                                                                  | •                      | 4                                                                  |
| Major serotypes 1/2b,4b [Lineage I]                                                                                                                                               | Serotypes              | 14 [1/2a, 1/2b, 1/2c,<br>3a, 3b, 3c, 4a, 4b, 4c,<br>4d, 4e, and 7] |
| Annual Infections 1600                                                                                                                                                            | Major serotypes        |                                                                    |
|                                                                                                                                                                                   | Annual Infections      | 1600                                                               |
| Deaths 1 in 5                                                                                                                                                                     | Deaths                 | 1 in 5                                                             |

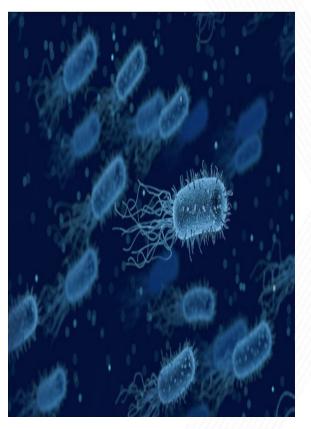
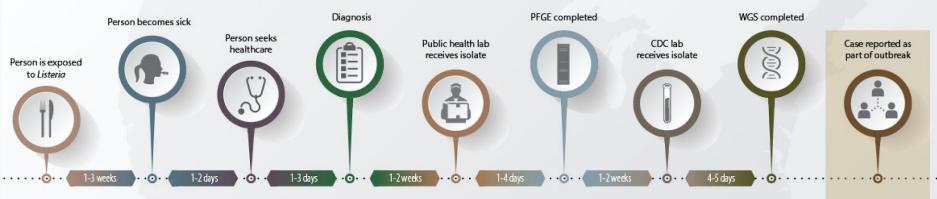




Image:https://www.forbes.com/sites/anagarcia valdivia/2019/08/23/health-alert-in-spain-listeri osis-outbreak-affects-168-people/#d21192426 2 807

Tec

#### **General timeline for Listeria infection**

# Timeline for Linking a Case of *Listeria* Infection to an Outbreak



 After a person eats
 Most people who

 food contaminated
 develop listeriosis seek

 with Listeria, symptoms
 medical care within

 usually begin within
 two days of developing

 a few weeks, but may
 symptoms.

 not occur for up to one
 month. For pregnant

 women, it may take
 up to two months for

 symptoms to appear.
 symptoms

A health care provider sends a specimen of blood or spinal fluid to a clinical lab. The lab detects *Listeria* in the person's specimen one to three days after it is received. The clinical lab reports the *Listeria* infection to the local public health department.

der The clinical lab ships an of isolate of the person's d *Listeria* to the state public health lab. This in step can take a week nen or longer, depending on how soon the lab he prepares the shipment the and transportation arrangements.\*

Next, the state public health lab conducts pulsed-field gel electrophoresis (PFGE) on the Listeria Isolate, and uploads the PFGE pattern to PulseNet's national database. This can be done in four days but can take longer if the lab has limited staff or resources or is responding to multiple emergencies. Some state public health laboratories can perform whole genome sequencing (WGS) at the same time they are completing PFGE.

 
 Some state public
 After receiving the isolate, CDC performs

 Listeria isolate to CDC
 WGS, which usually for WGS. Delivery can take 1 to 2 weeks.
 If a person's *Listeria* infection is linked to an outbreak, the case will be reported as part of the outbreak.

Image:https://www.cdc.gov/listeria/timeline.ht ml



#### How to establish if different isolates are part of an outbreak?



• DNA fingerprinting: PFGE vs Whole genome Sequence analysis?

The Listeria WGS project was started by CDC, federal partners and state and local health department since 2013 to links WGS and epidemiologic data to better detect and investigate listeriosis outbreaks.



Eg: Multistate Outbreak of Listeriosis Linked to Commercially Produced, Prepackaged Caramel Apples Made from Bidart Bros. Apples [2015] - using WGS

- Listeria infection are rare -however higher fatality 20-30% in high risk.
- Listeria initiative: provides a look at the who, where and when of Listeria infections



#### Listeria monocytogenes - Genetic view

| Genetic view      | Size                       |
|-------------------|----------------------------|
| Total Genome      | 2.8 - 3.2 million<br>bases |
| GC content        | 39%                        |
| core genome MLST  | 2014 - 2647 loci           |
| whole genome MLST | 4804 loci                  |
| Pan genome MLST   | 3560-6612 loci             |
| Plasmids          | 14 in <i>Listeria</i>      |

• Quorum sensing and other signals cause the up-regulation of several **virulence genes**.

| Listeriosis<br>treatment using | Antibiotic                                |
|--------------------------------|-------------------------------------------|
| β-lactam<br>antibiotic         | amoxicillin,<br>penicillin,<br>ampicillin |
| aminoglycoside                 | gentamicin                                |
| allergy to penicillin          | trimethoprim -<br>sulfamethoxazole        |
| alternative<br>treatment       | tetracycline and erythromycin             |



#### Listeria monocytogenes - Interested genes

| GENE                                | Antibiotic resistance         |
|-------------------------------------|-------------------------------|
| lmrB                                | lincomycin resistance protein |
| vanA, vanB                          | vancomycin resistance         |
| dfrD and dfrG                       | Trimethoprim resistance       |
| tetA, tetK, and tetL, tetM and tetS | Tetracycline resistance       |
| emrA, emrB and emrC                 | Erythromycin resistance       |
| lde gene                            | Fluoroquinolone resistance    |

- All L.monocytogenes species in general are inherently resistant to cephalosporins, oxacillin and fosfomycin
- Genes associated with virulence factors and pathogenicity islands LIPI 1, LIPI 2, LIPI3, LIPI4



#### **Genomic approaches - Subtyping**

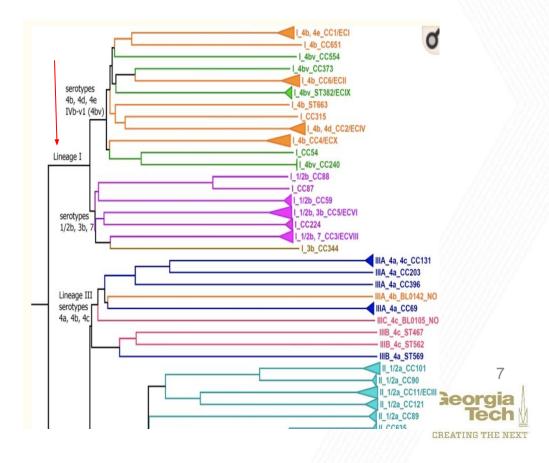
- Genomic data can be exploited with many different bioinformatics methods.
- Whole genome approach or Phylogenetic approach ANI, MLST [core genome, whole genome] and SNP

Appl Environ Microbiol. 2016 Oct 15; 82(20): 6258–6272. Published online 2016 Sep 30. Prepublished online 2016 Aug 12. doi: <u>10.1128/AEM.01532-16</u> PMCID: PMC5068157 PMID: 27520821

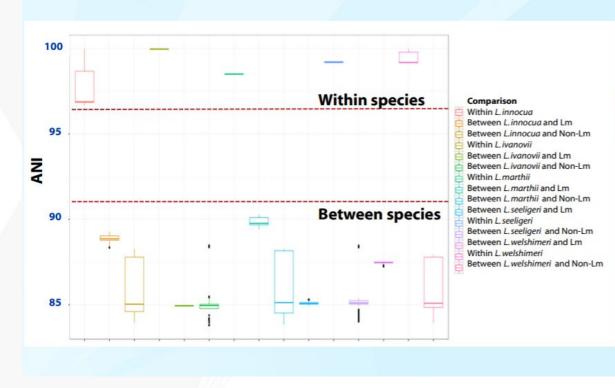
Core Genome Multilocus Sequence Typing for Identification of Globally Distributed Clonal Groups and Differentiation of Outbreak Strains of *Listeria monocytogenes* 

Yi Chen, Xing Narjol Gonzalez-Escalona, Thomas S. Hammack, Marc W. Allard, Errol A. Strain, and Eric W. Brown

<u>Front Microbiol</u>. 2017; 8: 2351. Published online 2017 Nov 29. doi: <u>10.3389/fmicb.2017.02351</u>

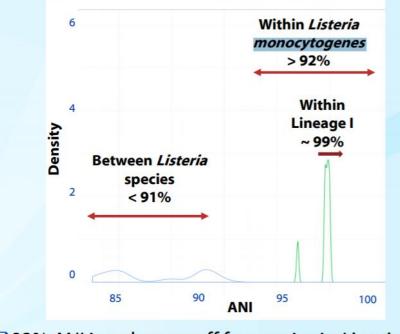

Microbio

PMCID: PMC5712588 PMID: <u>29238330</u>


An Assessment of Different Genomic Approaches for Inferring Phylogeny of *Listeria monocytogenes* 

Clémentine Henri,<sup>1</sup> Pimlapas Leekitcharoenphon,<sup>2</sup> Heather A. Carleton,<sup>3</sup> Nicolas Radomski,<sup>1</sup> Rolf S. Kaas,<sup>2</sup> Jean-François Mariet,<sup>1</sup> Arnaud Felten,<sup>1</sup> Frank M. Aarestrup,<sup>2</sup> Peter Gerner Smidt,<sup>3</sup> Sophie Roussel,<sup>1</sup> Laurent Guillier,<sup>1</sup> Michel-Yves Mistou,<sup>1,\*</sup> and René S. Hendriksen<sup>2</sup>

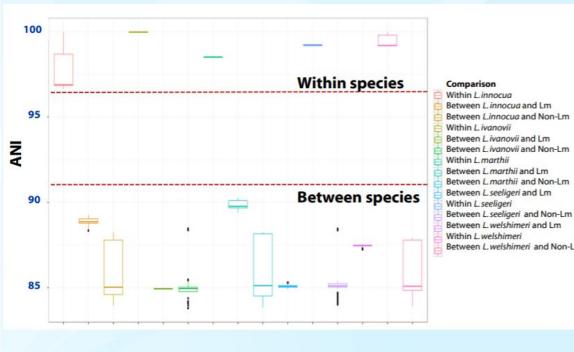
Author information 
Article notes 
Copyright and License information Disclaimer




#### **ANI for Listeria**



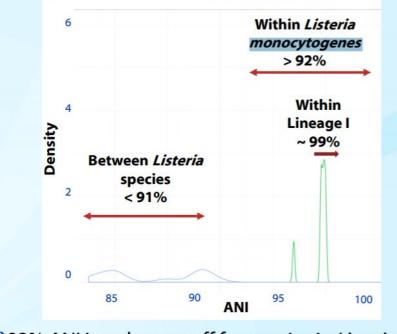
#### **Comparisons of Other** *Listeria* species


#### **Establish "Cut off" Values for ANI**



92% ANI is a clear cutoff for species in Listeria




## **ANI for Listeria**



#### **Comparisons of Other** *Listeria* species

Between L. seeligeri and Non-Lm Between L. welshimeri and Non-Lm

#### **Establish "Cut off" Values for ANI**



92% ANI is a clear cutoff for species in *Listeria* 



## **Alignment-based ANI**

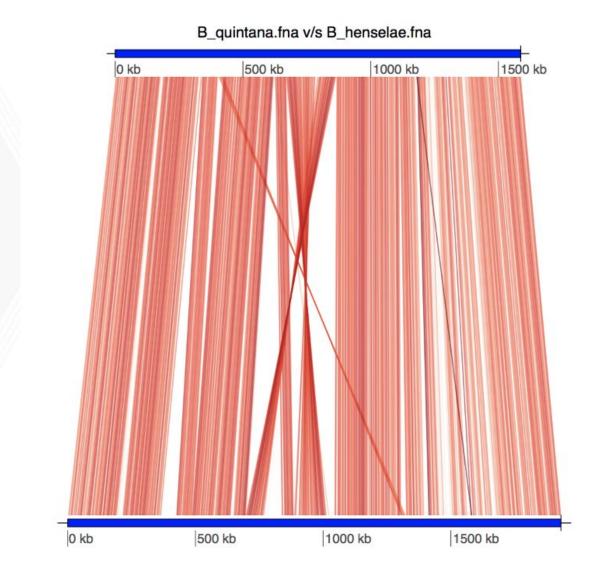
- ANI values are based on pairwise alignment of the genome stretches.
- Reliability depends on the quantity and quality of the aligned fragment.
- We can calculate the ANI based on BLAST (ANIb) and MUMmer (ANIm)
- JSpecies is able to run BLAST-based and MUMmmer-based ANI
- Limitation: Needs a lot of time.



#### **Alignment-free ANI**

 $I(A,B)/100 = 1 + \frac{1}{k} \times \log\left(\frac{2 \cdot J(A,B)}{1 + I(A,B)}\right)$ 

- Fast-ANI
- Avoids expensive sequence alignments
- Uses Mashmap as its MinHash based sequence mapping engine to compute the orthologous mappings and alignment identity estimates
   Estimates a k-mer based Jaccard similarity


\$ ./fastANI -q [QUERY\_GENOME] -r [REFERENCE\_GENOME] -o [OUTPUT\_FILE]

./contig/CGT3002contigs.fasta ./contig/CGT3003contigs.fasta 99.9739 893



899

## **Fast ANI**



12 Georgia

## **Multilocus Sequence Typing (MLST)**

• Aim

- Characterizing DNA sequence variations in bacterial isolates by focusing on allelic diversity across housekeeping genes (highly-conserved genes)
- Evaluating relationships between strains based on their unique allelic profiles or sequences (Maiden, 2006)
- Important in pathogen outbreak surveillance
- Deliverables: Allelic profiles of analyzed genes, sequence type for each isolate, phylogenetic tree generated with MLST output
- Types: 7-gene MLST, wgMLST, cgMLST, rMLST



## **Possible Tools to Use**

- MentaLIST
  - Performs allele calling directly from reads, relies on existing schemas and allele definitions (from PubMLST and cgMLST.org) (Silva, 2018)
  - Faster than other tools for larger schemas like cgMLST and wgMLST ("MentaLIST")
- ChewBBACA
  - Complete stand-alone pipeline including constructing and validating novel cg/wgMLST schemas and performing allele calling
  - De novo assemblers on complete or draft genomes
  - Suitable for large scale studies
- StringMLST
  - Easy and fast to run
  - Self-reported 100% accuracy

| Tool name     Type <sup>a</sup> Input     % Correct       Alleles     STs       stringMLST     K-mer     Reads     100.0     100.       CGE/MLST     BLAST     Reads     99.6     97.5       SRST2     Mapping     Reads     98.6     92.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Type <sup>a</sup> In | ool name   | Input    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|----------|
| stringMLST K-mer Reads 100.0 100.<br>CGE/MLST BLAST Reads 99.6 97.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |            |          |
| CGE/MLST BLAST Reads 99.6 97.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |            |          |
| 전성 그 것 같아요. 그는 것 ? 그 그는 것 ? 그 그 그 그 그 그 요. 그 그 그 그 그 그 그 그 요. 그 그 그 요. 그 그 그 | K-mer                | ringMLST   | Reads    |
| CPCT2 Manning Poads 096 024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BLAST                | GE/MLST    | Reads    |
| SK512 Mapping Reads 76.6 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mapping              | RST2       | Reads    |
| SRST BLAST Assembly 95.0 77.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BLAST A              | RST        | Assembly |
| Offline CGE BLAST Assembly 96.1 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BLAST A              | ffline CGE | Assembly |

Gupta, Anuj, et al. "StringMLST: a Fast k-Mer Based Tool for Multilocus Sequence Typing." *Bioinformatics* IG THE N (Oxford, England), U.S. National Library of Medicine, 1 Jan. 2017, www.ncbi.nlm.nih.gov/pubmed/27605103.

## **Our First MLST Tool of Choice: StringMLST**

Exploratory tool for MLST, 7 housekeeping genes Utilized the existing MLST scheme from PubMLST

Very fast and efficient

Plan: Construct phylogenetic tree from this initial output to visualize the sequence types of isolates at hand, research heteroresistance and susceptibility of sequence types

First five lines of output:

| Sample  | abcZ | bglA | cat | dapE | dat | 1dh | 1hkA | ST |
|---------|------|------|-----|------|-----|-----|------|----|
| CGT3058 | 3    | 1    | 1   | 1    | 3   | 1   | 3    | 1  |
| CGT3194 | 3    | 1    | 1   | 1    | 3   | 1   | 3    | 1  |
| CGT3292 | 3    | 1    | 1   | 1    | 3   | 1   | 3    | 1  |
| CGT3372 | 3    | 1    | 1   | 1    | 3   | 1   | 3    | 1  |



## Next Tool of Choice: MentaLIST

#### Existing or constructed schema

- A traditional MLST schema exists for our species on PubMLST and cgMLST schema exists on cgmlst.org
- Verified and comprehensive MLST schemes take time & funding
- We choose to use this existing scheme along with known phenotypic profiles of our samples to easily and accurately get variances in significant genes for 26,395 strains of Listeria

Options

- 7-gene MLST, cgMLST ---> Plan: Construct phylogenetic tree, compare with the tree from StringMLST output
- Detects novel alleles and their mutation(s)

Efficiency

 Faster than ChewbaCCa with same or better accuracy, less computational resources needed when running larger schemas like wgMLST (a few thousand loci) and cgMLST (a few hundred loci) (Feijao, 2017)

## (SNP)-based Phylogenetic Analysis

- Identifies and compares SNPs between isolate genomes
- Measures variations of SNPs between isolates
- Construct a tree based on comparisons to differentiate isolates

- The NGS reads are mapped on a reference genome
- High quality variants are identified for each isolate using a predefined filtering parameters
- The variant calls of individual isolates are selected based on specifies rules and combined into a population-wide SNP matrix

 Concatenated SNPs from the SNP matrix are used to construct a phylogenetic tree

#### Comparing with wgMLST

- More flexible as they do not require a predefined scheme
- Provide an exceptionally high subtyping resolution
- Computationally demanding
- Distinguish between isolates that have been identified as closely related



ACGTT

CGTTAGA

GCA GCGT

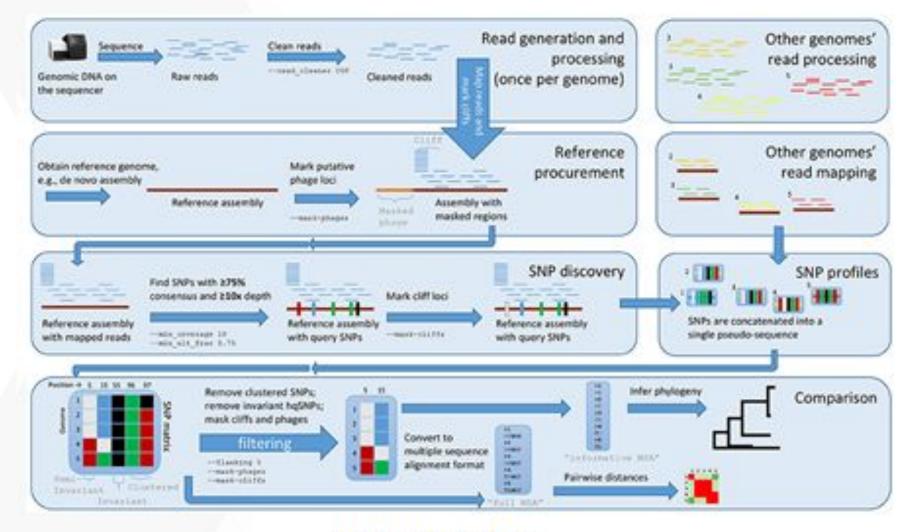
GCA

Wited

Pleased molecularity

Varianti

E244<sup>1</sup> multita

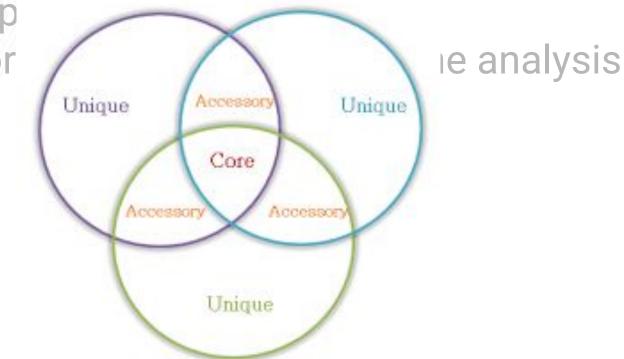

came nuclear

Tryingersein

STREVOCK

| Tool Citation Input   |          | Input                                                                                           | Reference<br>Genome | Features                                                                                                                                                                           | Preference                                                                                              |
|-----------------------|----------|-------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| ParSNP                | 580/2014 | Draft assemblies<br>or finished genomes                                                         | Yes                 | <ul> <li>Multi- maximal unique matches</li> <li>Only aligns the core genomes</li> <li>Requires finished or assembled genomes</li> </ul>                                            | <ul> <li>Developed as a<br/>solution to the<br/>problem of</li> </ul>                                   |
| RealPhy               | 226/2014 | FASTQ (short reads),<br>FASTA or<br>Genbank format                                              | Yes<br>(multiple)   | <ul> <li>Either FASTA or Genbank format (contigs or<br/>fully sequenced genomes) as reference<br/>genome</li> <li>Option to combine individual reference<br/>alignments</li> </ul> | aligning large<br>numbers of<br>microbial genomes<br>• RealPhy depends<br>on accurate<br>mapping of raw |
| kSNP3.0               | 221/2015 | A list of sequence file path<br>containing a genome and a<br>name for that genome (txt<br>file) | No                  | <ul> <li>K-mer</li> <li>Without genome alignment or reference<br/>genome</li> </ul>                                                                                                | reads (or contigs)<br>to the reference<br>genomes<br>• kSNP3.0                                          |
| SNPhylo               | 186/2014 | SNP/genotype format<br>(vcf/hapmap file),<br>SNP data format file,<br>GDS file                  | No                  | <ul> <li>Reduce SNP redundancy by linkage<br/>disequilibrium (LD)</li> <li>Decreases running time without losing<br/>informative sites</li> </ul>                                  | • SNPhylo                                                                                               |
| CFSAN SNP<br>Pipeline | 93/2015  | FASTQ (short reads)                                                                             | Yes                 | <ul> <li>Focus on closely related sequences, not<br/>suited for the analysis of relatively distantly<br/>related organisms</li> </ul>                                              | <ul> <li>Developed with<br/>the objective of<br/>creating high</li> </ul>                               |
| Lyve-SET              | 55/2017  | FASTQ (short reads)                                                                             | Yes                 | Customized pipeline for different species     Phage masking                                                                                                                        | quality SNP<br>matrices for<br>sequences from                                                           |
| SNVPhyl               | 49/2017  | FASTQ (short reads),<br>Invalid positions file (bed<br>file)                                    | Yes                 | Mask out regions on the reference genome<br>with variants. Masked regions will not be<br>included in the phylogeny                                                                 | closely-related<br>pathogens<br>• Lyve-SET                                                              |

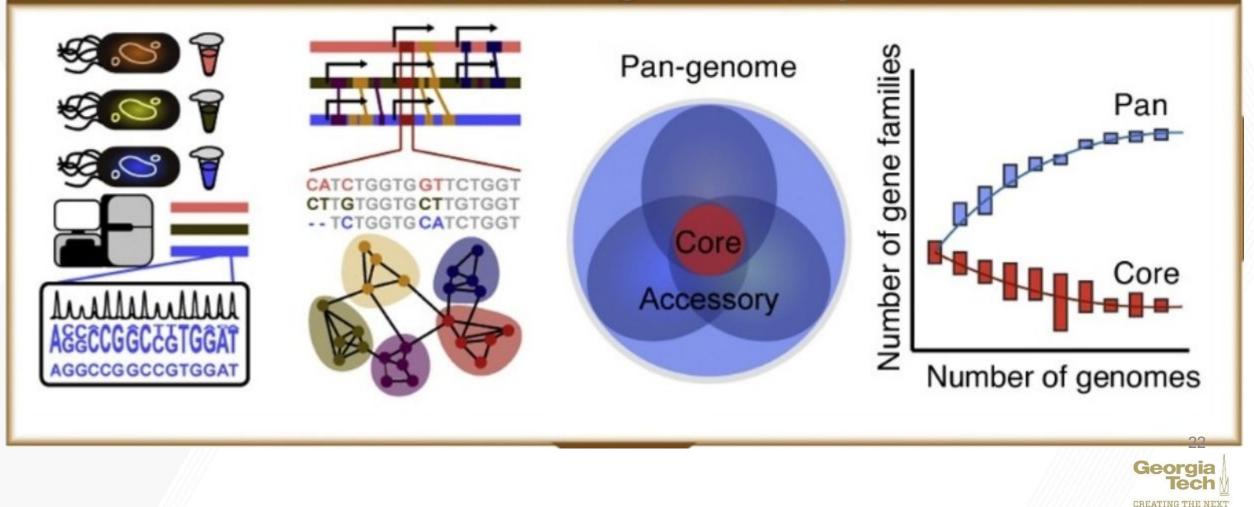
#### LYVE-Listeria, Yersinia, Vibrio and Enterobacteriaceae reference lab SET




The Lyve-SET workflow Lee, et al. 2017, Front. Microbiol.

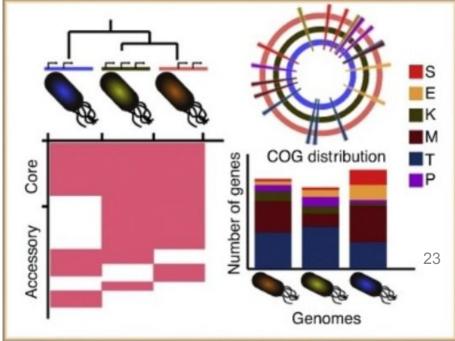
- Reads cleaning: CG-Pipeline
- Reads mapping: SMALT
- Variant calling: VarScan
- SNP matrix: boftools
- SNP matrix to MSA
- Phylogeny: RAxML v8




- Pan-genome
  - Pan-genome: all the genes found in the given sample set
  - Core-genome: genes shared among all samples
  - Accessory genome: pan-genome minus core-genome
- Core steps of p
   Biological infor
   Applications

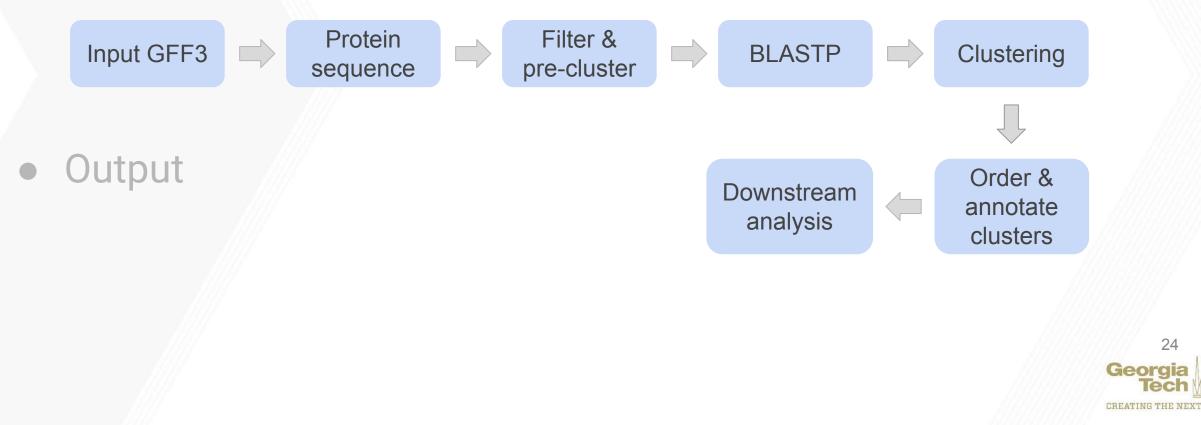





- Pan-genome
- Core steps of pan-genome analysis
  - Collection of genome data
  - Homology clustering
  - Profiling of pan- and core-genomes
- Biological information from pan-genome analysis
- Applications

#### Core steps of pan-genome analysis

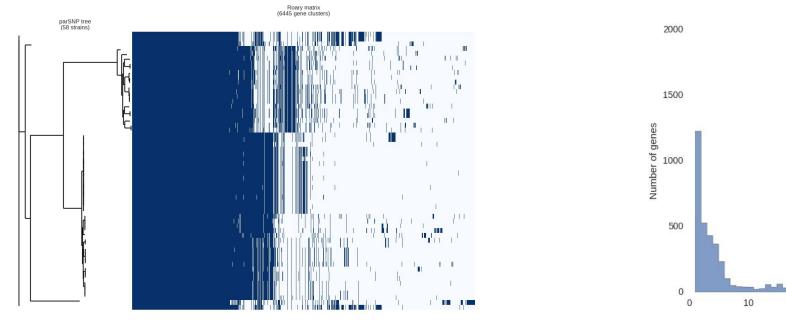


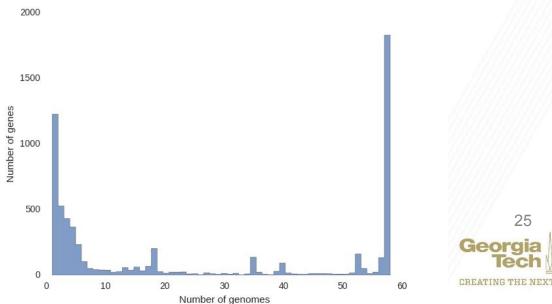

- Pan-genome
- Core steps of pan-genome analysis
- Biological information from pan-genome analysis
  - Phylogenetic tree
  - Presence and absence of genes
  - Functional distribution of proteins
- Applications





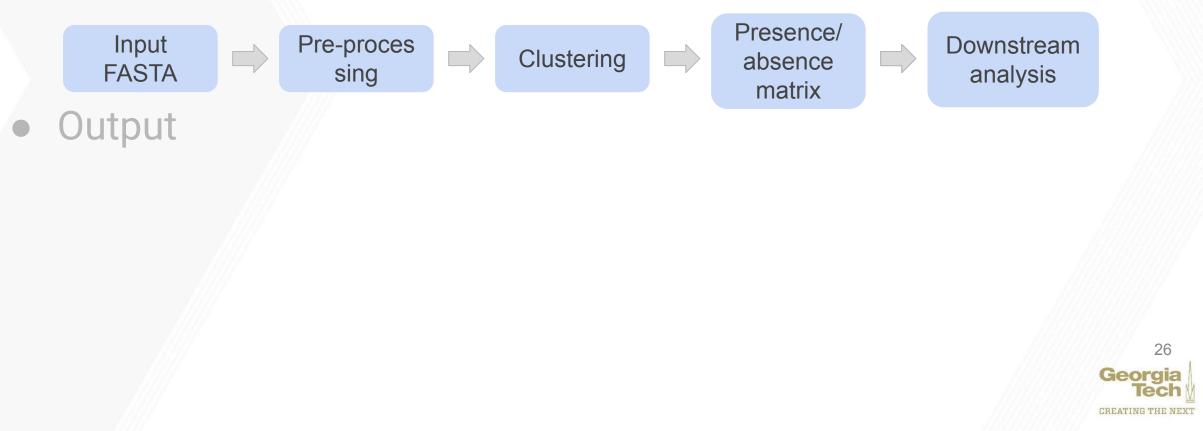
## **Tools for pan-genome analysis: Roary**


- 2015; 1045 citations.
- Input: one annotated GFF3 file per sample
- Workflow:




24

## **Tools for pan-genome analysis: Roary**


- Output:
  - Profiling of pan- and core-genomes
  - Gene presence/absence matrix
  - Representative sequence for each cluster
  - Core/accessory genome phylogenetic tree





## **Tools for pan-genome analysis: BPGA**

- 2016; 187 citations
- Input: one protein sequence file per sample
- Workflow:



## **Tools for pan-genome analysis: BPGA**

- Output:
  - Profiling of pan- and core-genomes
  - Representative protein sequence for each cluster
  - Gene presence/absence matrix
  - Atypical GC content
  - Gene function distribution
  - Core/accessory genome phylogenetic tree
  - Ο.

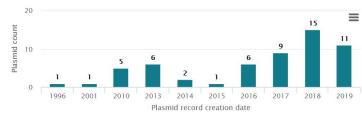


#### **Plasmids in Listeria**

#### Number of plasmids curated: >57 Length of Listeria plasmids: 30K-100K Number of ORFs: 35 - 100 MGEs: 9-20

#### General features of 14 plasmids of genus Listeria.

| Host                                  | Plasmid        | Isolation | Status          | Length<br>[bp] | ORFs <sup><u>a</u></sup> | MGEs <sup>b</sup> |
|---------------------------------------|----------------|-----------|-----------------|----------------|--------------------------|-------------------|
| L. monocytogenes 1/2b Lm1             | pLM33          | cheese    | closed          | 32307          | 36                       | 9                 |
| L. monocytogenes 1/2a FSL F2-515      | pF2-515        | meat      | contigs<br>(11) | 37163          | 61                       | 12                |
| L. monocytogenes 7 UG1<br>SLCC2482    | pLM7UG1        | human     | closed          | 50100          | 55                       | 13                |
| L. monocytogenes 1/2c UG1<br>SLCC2372 | pLM1-<br>2cUG1 | human     | closed          | 50100          | 54                       | 13                |
| L. monocytogenes 1/2b FSL J1.194      | pJ1-194        | human     | contigs<br>(1)  | 57536          | 69                       | 16                |
| L. monocytogenes 1/2b UG1<br>SLCC2755 | pLM1-<br>2bUG1 | human     | closed          | 57780          | 63                       | 16                |
| L. monocytogenes 1/2b FSL R2-<br>503  | pR2-503        | human     | contigs<br>(3)  | 56540          | 86                       | 20                |
| L. monocytogenes 4b FSL N1-017        | pN1-017        | trout     | contigs<br>(3)  | 56037          | 62                       | 13                |
| L. monocytogenes 1/2a 08-5578         | pLM5578        | human     | closed          | 77054          | 76                       | 11                |
| L. monocytogenes 1/2a J0161           | pLMJ0161       | human     | contigs<br>(2)  | 82700          | 90                       | 10                |




28 Georgia

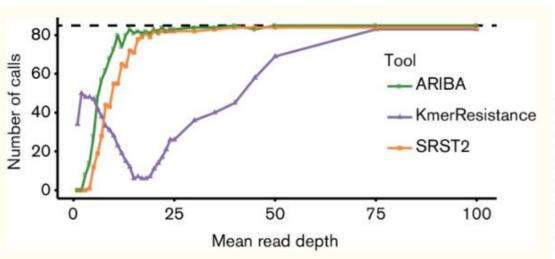
#### **Plasmid Databases and Tools**

| Databases/T<br>ools | Year | Citations | Number of<br>plasmids/sequences | Description                                                                | Limitations                            |
|---------------------|------|-----------|---------------------------------|----------------------------------------------------------------------------|----------------------------------------|
| PLSDB               | 2019 | 29        | 13789                           | Sources from <b>RefSeq</b> , <b>INSDC(DDBJ</b> , <b>EMBL-EBI, GenBank)</b> | Novel, not been used for typing before |
| pATLAS              | 2019 | 6         | 12746                           | web server containing comprehensive information about bacterial plasmids   | online, Limited functionality          |
| pMLST               | 2014 | 1061      | 769                             | sourced from pubMLST, updated weekly                                       | no command line alternate              |





| # | Plasmid    | Topology | Created (  | Loc. name    | Loc. name (mapp | Latitude (ma | Longitude (m | Isolation sour | Host         | Sample type | PlasmidFinder                           | pMLST |
|---|------------|----------|------------|--------------|-----------------|--------------|--------------|----------------|--------------|-------------|-----------------------------------------|-------|
| 1 | CP044433.1 | circular | 2019-09-30 | USA:CA       | USA,CA          | 36.7014631   | -118.7559974 | environmental  | . missing    |             | rep25_2_M640p00130(J1776plasmid), CP006 |       |
| 2 | CP044431.1 | circular | 2019-09-30 | USA: CA      | USA,CA          | 36.7014631   | -118.7559974 | swab           |              |             | rep25_2_M640p00130(J1776plasmid), CP006 |       |
| 3 | MH277333.1 | circular | 2019-12-31 |              |                 |              |              |                |              |             | rep25_2_M640p00130(J1776plasmid), CP006 |       |
| 4 | MK134858.1 | circular | 2019-11-04 |              |                 |              |              |                |              |             | rep26_2_repA(pLGUG1), FR667693          |       |
| 5 | CP030101.1 | circular | 2018-07-09 | USA: NY      | USA,NY          | 43.1561681   | -75.84499459 | water          | Environment  |             |                                         |       |
| 6 | MH382833.1 | circular | 2018-06-27 |              |                 |              |              |                |              |             | rep26_3_M643p00680(N1011Aplasmid), CP00 |       |
| 7 | U40997.1   | circular | 1996-04-02 |              |                 |              |              |                |              |             | rep22_1b_repB(pAMalpha1), AF503772      |       |
| 8 | KU513859.1 | circular | 2016-03-21 | Italy: MILAN |                 | 45.46        | 9.1900000000 | blood          | Homo sapiens |             | rep26_2_repA(pLGUG1), FR667693          |       |
|   |            | 4        | 1          |              | 1               |              |              |                |              |             |                                         | 29    |

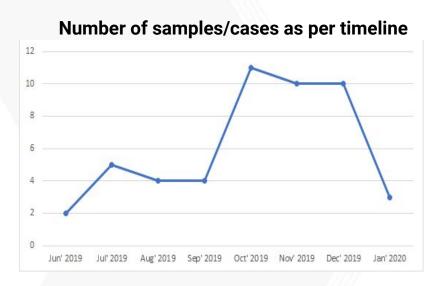




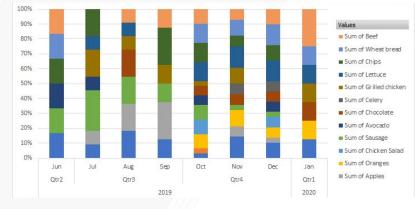

- Rapid antimicrobial resistance genotyping
- Uses fastq reads and can extract information relevant to both Genome and Plasmids that we might have missed out in assemblies

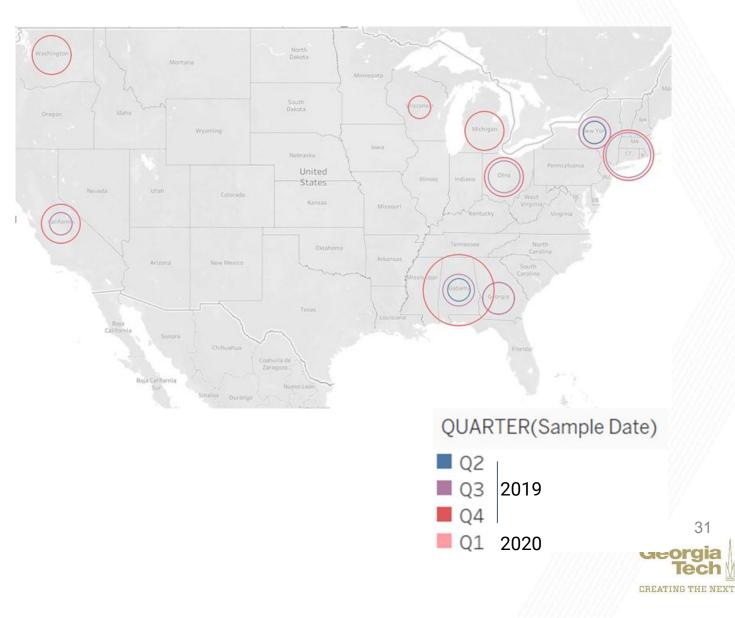
## Output will be compared and combined with results obtained from annotation group

| Tools                                            | Year | Citations |
|--------------------------------------------------|------|-----------|
| ARIBA(rapid antimicrobial resistance genotyping) | 2017 | 156       |
| KmerResistance                                   | 2016 | 60        |
| SRST2(Short read sequence typing)                | 2014 | 481       |







30

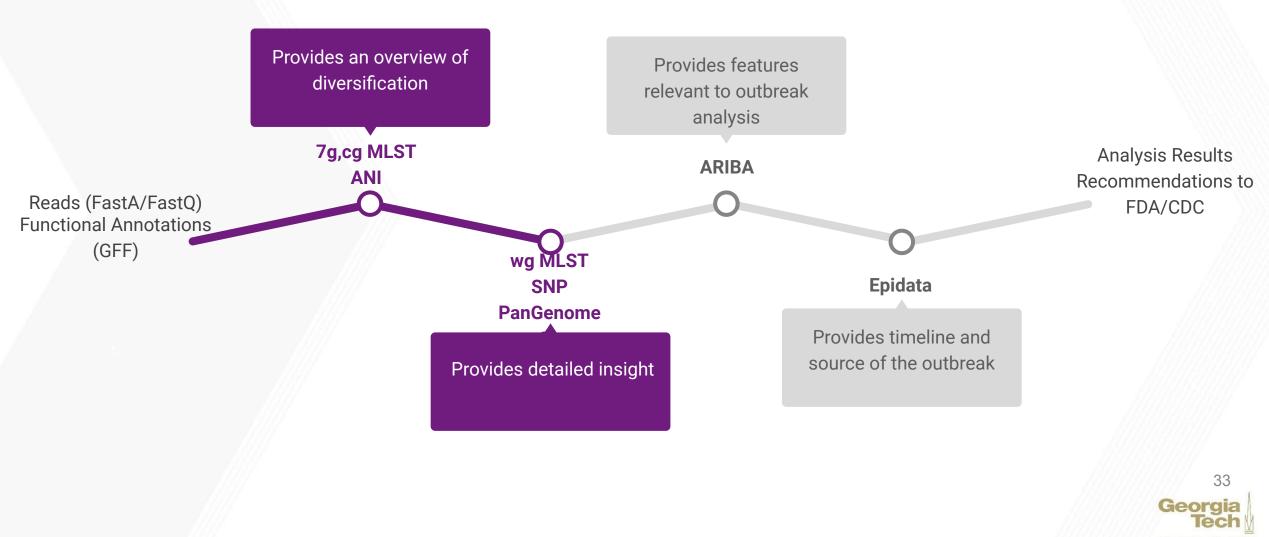

- ARG-ANNOT. PMID: 24145532
- CARD. PMID: 23650175
- MEGARes PMID: 27899569
- NCBI BioProject: PRJNA313047
- plasmidfinder PMID: 24777092
- resfinder. PMID: 22782487
- VFDB. PMID: 26578559
- SRST2's version of ARG-ANNOT. PMID: 25422674.
- VirulenceFinder PMID: 24574290.

## **Epidemiological Data Exploration**



#### Percentage of food items consumed as per timeline






## **Comprehensive Analysis**

- Outbreak vs Sporadic Strains
  - Combined analysis if clusters from MLST, SNP and ANI tools
  - Compare with information received from ARIBA/SRST2 and additional results from Gene Prediction/Annotation Groups
- Narrow down on the location and food source using the Epidata
- Recommendations to FDA/CDC
  - List of recommended Antibiotics based on resistance profiles
  - Further WGS analysis on the food source and imposing limitations on distribution



#### **Comprehensive Analysis**



CREATING THE NEXT

## References

- Filliol I, et al. Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J. Bacteriol. 2006;188:759–772. doi: 10.1128/JB.188.2.759-772.2006.
- Adam D. Leaché1 and Jamie R. Oaks2, The Utility of Single Nucleotide Polymorphism (SNP) Data in Phylogenetics. Annual Review of Ecology, Evolution, and Systematics. 2017; Vol. 48:69-84. https://doi.org/10.1146/annurev-ecolsys-110316-022645
- Shea N Gardner, Tom Slezak, Barry G. Hall, kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome, Bioinformatics, Volume 31, Issue 17, 1 September 2015, Pages 2877–2878, https://doi.org/10.1093/bioinformatics/btv271
- Maiden, Martin C J. "Multilocus Sequence Typing of Bacteria." Annual Review of Microbiology, U.S. National Library of Medicine, 2006, www.ncbi.nlm.nih.gov/pubmed/16774461.
- Silva, Mickael, et al. "ChewBBACA: A Complete Suite for Gene-by-Gene Schema Creation and Strain Identification." Microbial Genomics, Microbiology Society, Mar. 2018, www.ncbi.nlm.nih.gov/pmc/articles/PMC5885018/.
- "MentaLiST." OmicX, omictools.com/mentalist-tool.
- Feijao, Pedro, et al. "MentaLiST A Fast MLST Caller for Large MLST Schemes." BioRxiv, Cold Spring Harbor Laboratory, 1 Jan. 2017, www.biorxiv.org/content/10.1101/172858v2.
- Kim, Yeji, et al. "Current Status of Pan-Genome Analysis for Pathogenic Bacteria." Current Opinion in Biotechnology, vol. 63, 2020, pp. 54–62., doi:10.1016/j.copbio.2019.12.001.
- Page, Andrew J., et al. "Roary: Rapid Large-Scale Prokaryote Pan Genome Analysis." Bioinformatics, vol. 31, no. 22, 2015, pp. 3691–3693., doi:10.1093/bioinformatics/btv421.
- Chaudhari, Narendrakumar M., et al. "BPGA- an Ultra-Fast Pan-Genome Analysis Pipeline." Scientific Reports, vol. 6, no. 1, 2016, doi:10.1038/srep24373.
- Valentina Galata, Tobias Fehlmann, Christina Backes, Andreas Keller, PLSDB: a resource of complete bacterial plasmids, *Nucleic Acids Research*, Volume 47, Issue D1, 08 January 2019, Pages D195–D202



## References

- Hunt, Martin et al. "ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads." Microbial genomics vol. 3,10 e000131. 4 Sep. 2017, doi:10.1099/mgen.0.000131
- Annaleise Wilson et al. "Phenotypic and Genotypic Analysis of Antimicrobial Resistance among Listeria monocytogenes Isolated from Australian Food Production Chains". Feb 9, 2018. Genes doi: 10.3390/genes9020080
- Clementine Henri et al "An Assessment of Different Genomic Approaches for Inferring Phylogeny of Listeria monocytogenes" Front. Microbiol., 29 November 2017 | https://doi.org/10.3389/fmicb.2017.02351
- Yi Chen et al "Core Genome Multilocus Sequence Typing for Identification of Globally Distributed Clonal Groups and Differentiation of Outbreak Strains of *Listeria monocytogenes*" Appl Environ Microbiology, 2016 Oct 15 doi: 10.1128/AEM.01532-16

35

Georgia

CREATING THE NEXT

# Thankyou!

