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Overview

* High level view of the concepts underlying the first steps in your work
e Starting point for further investigation (minimum knowledge)

* Intended to be practical
* Considerations for your own work
» Sense of best-practices (where relevant)
* Some suggestions for software



Outline

 Historical context for sequencing and NGS

* Sanger sequencing

* Roche’s 454

* [llumina Sequencing

* PacBio + Oxford Nanopore

e FASTQ and quality scores

e Quality control
* FASTQC

* Genome assembly
» Reference versus de novo assembly
* De novo assembly algorithmic paradigms

* Qverlap layout consensus
* de Bruijn graphs

* Genome assembly metrics
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a DNA fragmentation

Sanger Sequencing

In vivo cloning and amplification

oX

Cvelo seauencn * Based on chain termination chemistry using fluorescently
3-... GAGTAG:TAGGAEEGTGA?.-E' (template) labeled di-d eoxy NTPs (dd NTPS)

8-.. CTGAT (primer)
..CTGATC ’O

* Developed in 1977

Ee
" CroAtoTAT A2 * A lot of sequencing happened with Sanger:

CTGATOTATG 2
CTGATC Gp

..CTGATCTATGC g * First gene
Polymerase ...CTGATCTATGCT ’0 . )
dNTPs . CTGATCTATGCTC * First virus

| NTPs . CTGATCTATGCT 2 : i Vi '
Labeled ddNTPs —...CTGATCTATGCTCG * H. influenza (1995) — first free-living organism

Electrophorsesis e S. cerevisiae (1996) — first eukaryote

(1 read/capillary) e £ coli (1997)
G * Human genome (2000)
=T
[ — 0}
=G
= MAAA
| e—

Shendure and Ji. 2008 Nat Biotech. 26:1135-1145



Sequencing the
human genome in a
factory-style setting

Figure 3 The automated production line for sample preparation at the Whitehead
Institute, Center for Genome Research. The system consists of custom-designed factory-
style conveyor belt robots that perform all functions from purifying DNA from bacterial
cultures through setting up and purifying sequencing reactions.
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A big |
change with {

(Roche) 454
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Advent of next-
generation

sequencing
(NGS)
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National Human Genome
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“Sequencing-by-
synthesis” paradigm

» 454 was the first SBS (sequencing-by-
synthesis) machine to reach the market

* Bases of a DNA molecule are read as a
complimentary molecule is synthesized

* As opposed to the whole complimentary
molecule being synthesized and then read
out

* Much smaller volumes of reagents
* Many, many reads at the same time

* 454 was originally a few 100K vs 96 in
capillary

* Lost some bases in read length = 700 bp vs
1kb in Sanger
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Sequencing by
synthesis

Photons generated
are captured by
CCD camera

Margulies et al. 2005. Nature 437: 376380
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Illumina Sequencing

https://www.illumina.com/science/technology/next-generation-
sequencing/sequencing-technology/2-channel-sbs.html

1. Small scale, very tiny reactions, even smaller than ‘ ;
454, allowing for much greater density

2. Reversible terminator chemistry - allows the T
controlled addition of one base at a time f

3. Optics. The unsung hero of the sequencing
revolution. This allows for the insane density and
number of reads that you can fit on an Illumina
flow cell

PR PR e S s e 4 44

Weeseces

‘
DNA (< 1 1g)

5 6

1 2 3 4
* Big issue with lllumina = smaller read length | 5 z —  TGCT'C
- ’ i s . Base calling
1 2 3 4 5 6
* Started with 35bp, today we are at 2x300bp  ,.came Enn —  TeCTAC
v . ’ X Base calling
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Illumina Sequencing

https://www.youtube.com/watch?v=fCd6B5HRaZ8
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https://www.youtube.com/watch?v=fCd6B5HRaZ8

Paired-end sequencing

* In paired-end sequencing, a DNA e Single-end

fragment is read twice — once from each | >

end (recall the Illumina video!) DNA fragment

Advantages

.. Paired-end
* More efficient use of the fragment Read 1

library | )
DNA fragment

S

* Resolving chromosomal rearrangements Read 2
like insertions, deletions and inversions

* Improves alignment

» Scaffolding becomes possible

1/16/2020 13



Resolving repeats with paired-end

Repeating region

Case 1: single-end Where are these reads coming from???

L] | know U1’s and U2’s position because of

v their mate!

Case 2: paired-end

1/16/2020
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Third Generation Sequencing

* Shift towards single molecule, long read sequencing

* Two big names here: Pacific Biosciences (PacBio) and Oxford Nanopore



Pacific Biosciences

Pacific Biosciences — Real-time sequencing

Phospholinked hexaphosphate nucleotides

Multiplexed
VAV

Limit of detection zone

Fluorescence pulse

aN
e
!

INTENSITY  s—

Epifluorescence detection

Nature Reviews | Genetics

1/16/2020
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DNA can be sequenced by threading it through a microscopic pore in a membrane.
Bases are identified by the way they affect ions flowing through the pore from one

Oxfo rd Na nopore side of the membrane to the other. S

Technology (ONT) ‘%

Flongle SmidgIlON

© A flow of ions through
the pore creates a current.

Each base blocks the
© One protein flow to a different degree,
unzips the altering the current.
DNA helix into
two strands.
GATATIGC GA ﬁ
O Asecond

protein creates

a pore in the

membrane

and holds

an “adapter”

molecule. O The adapter molecule
keeps bases in place long
enough for them to be
identified electronically.

GridIONis PromethION

https://nanoporetech.com/about-us/news/oxford-nanopore-announces-ps100-million-
140m-fundraising-global-investors
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@ APPLICATIONS OF NEXT-GENERATION SEQUENCING

-

Coming of age: ten years of next-
generation sequencing technologies

Sara Goodwin', John D. McPherson® and W. Richard McCombie'

Abstract | Since the completion of the human genome project in 2003, extraordinary progress has
been made in genome sequencing technologies, which hasledto a decreased cosl per megabase
and an increase in the number and diversity of sequenced g An ity of

genome archi e has been led, bringing these i hnologies to even greater

advancements. Some approaches maximize the number of bases sequenced in the least amount
of time, generating a wealth of data that can be used to understand increasingly complex
phenotypes. Alternatively, other approaches now aim to sequence longer contiguous pieces of

DNA, which ial for resol

are providi hers and cl

regions. These and other strategies

avariety of tools to probe genomes in greater depth,
leading to an enhanced understanding of how genome sequence variants underlie phenotype

and disease.
Read Starting with the discovery of the smmur: o{ DNA‘ the rcsu.lls. particularly for variant discovery and clini-
The e of s rom s @reat trides have been made in und om: ions. Although long-read sequencing over-
single molecute of DNA plexity and diversity of genomes in health md dlscnsc comes the length limitation of other NGS npproachcs
A multitude of innovations in reagents and i it remains iderably more ive and has lower

tation supported the initiation of the Human Genome
Project’. Its completion revealed the need for greater
and more advanced technologies and data sets to answer
and dideary mosled ONTPS  the complex biological questions that arose; however,
f:"“:ﬁ i ;ﬁ’:‘:" limited throughput and the high costs of sequencing
S aation eEnt: oo rcmamcd rm)of barriers. The release of the first truly
s high ing platform in the mid-2000s
didecny-dNTP, thus heralded a 50,000-fold drop in the cost of human
termnatng eiongation. The genome sequencing since the Human Genome Project’
= and led to the moniker: next-generation sequencing
(NGS). Over the past decade, NGS technologies have
continued to evolve — increasing capacity by a factor
of 100-1,000 (REF 4) — and have mcorpoulcd revo-
lutionary i ions to tackle the P of
genomes. These advances are providing read lengths
*Cold Spring Harbor as long as some entire genomes, they have brought the
cost of sequencing a human genome down to around
US$1,000 (as reported by Veritas Genomics)’, and they
’Dtpmﬂolﬁlad)umv have enabled the use of sequencing as a clinical tool*.

MmmNavm 11724,

throughput than other plalforn:s. limiting the wide-
spread adoption of this technology in favour of less-
expensive approaches. Finally, NGS is also competing
with alternative technologies that can carry out simi-
lar tasks, often at lower cost (BOX 1); it is not clear how
these disparate approaches to genomics, medicine and
research will interact in the years to come.

This Review evaluates various approaches used
in NGS and how recent advancements in the field are
changing the way genetic research is carried out. Details
of each approach along with its benefits and drawbacks
are discussed. Finally, various emerging applications
‘within this field and its exciting future are explored.

Short-read NGS

Overview of clonal template generation approaches.
Short-read sequencing approaches fall under two broad
categories: sequencing by ligation (SBL) and sequen-
cing by synthesis (SBS). In SBL approaches, a probe
sequence that is bound to a flucrophore hybridizes to
a DNA fragment and is ligated to an adjacent oligo-
nucleotide for imaging. The emission spectrum of the

and Malecular Medicine; Although exciting, these advancements are not

and fhe Comprakemive without limitations. As new technologies emerge,

Cancer Center, University P

of California, Davis, existing problems are exacerbated or new problems

California 95817, USA arise. NGS pl provide vast ities of data, P

Correspondence to WRM, but the associated error rates (~0.1-15%) are higher
and the read lengihs generally shorter (35-700bp for
) than

il hore indicates the identity of the base or bases
complementary to specific positions within the probe.
In SBS approaches, a polymerase is used and a signal,

o1 10 1058/ 201
Pubiined artine 17 May

those of traditional Sanger
sec:.ér:cmg' requiring careful examination of

such as a fluorophore or a change in ionic concentra-
tion, identifies the incorporation of a nucleotide into

NATURE REVIEWS | GENETICS

VOLUME 17 | JUNE 2016 | 333
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FASTQ format

1. The base calls for the sequence read (i.e. the sequence)
* What wavelength did the machine pick up when the spots were high with a light source?

2. Asetof quality scores; one per base call generated
* Always have the exact same number of quality scores as you have base calls

@HWE1FGTJ-GH13-454470/1 Read Identifier Line

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAA Sequence
Description Line

Encoded Quality
Scores

+
!"*((((***+))%%%++)(%%%%)_1***_+*")

1/16/2020
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What does a quality score mean?

* A probabilistic measure of how confident the machine is that it called the correct
base for that cycle for that spot

* lllumina has a series of internal metrics for calculating quality: intensity of the called base,
proximity to nearby spots, off-color intensity

* High quality is good, low quality is bad
* High quality — High probability of a correct base call for that spot and cycle
* Low quality - Low probability of a correct base call for that spot and cycle

* [[lumina has gotten really good at producing good quality read files but every now
and then you produce bad data
* Garbage in, garbage out



An example FASTQ file
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@v00171:45:000000000-AVHUW:1:1101:19247:2084 1:N:0:GTAGAGGA+TCGACTAG
AGAGTTTGATCCTGGCTCACTGCAACCTCCGCCTCCTGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCTGAGTAGCTAGGACTACAGGCACATGCCACCATGCCCAGCTACTTTTTGTAT
+
8AACCFFFFFGGGGGFGGIEF9I@, 6CCACCF7BCA<C@8<EFQ, ,6; , , ; DFCCAFF<CC<, , ; CFC@E, , <CIC<FGGCFGGGCC8C<FGBE<EFICFEGGGE<<,CF, , : EEFFGGAR
@v00171:45:000000000-AVHUW:1:1101:19233:2098 1:N:0:GTAGAGGA+TCGACTAG
AGAGTTTGATCCTGGCTCACTGCAACCTCCGCCTCCTTGGTTCACGCTTTTCTCCTGCCTCATCCTCCTGAGTAGCTAGGACTACAGGCACATTCCACCATGCCCAGCTAATTTTTGTAT
+
86@@CEFFFFGGGECFGGCGG, ; , , ECFGG+FCC@@cC, ,,CC@, , , ; , , :@FEF<FE@<@C, , ; CEEAF, ,6E99FGG? , CFGGFG88<@F , C, C9@@FFFCEGES , CFA, CFFFFFGIR
@v00171:45:000000000-AVHUW:1:1101:19208:2100 1:N:0:GTAGAGGA+TCGACTAG
AGAGTTTGATCCTGGCTCAGATTGAACTCTGGCGGCAGGCTTAACACCTGCAAGTCGAACTATGAAGT CTAGCTTGCTAGACGGATTAGTGGCGAACGGGTGAGTAATGCTTAGGAATCT
+
8 <BCCFFGGGFGGGGGGGFGIEEY, C6 , CEES ;@7@+++7;C, ,6,6,C;E<, ;CFF7,9, ,<,<<9EFGICFFF, <F9<FGGD, ,8:6FF, ,++@8=BCFEFGG, , , , AB@B , =EDGER
@v00171:45:000000000-AVHUW:1:1101:14340:2104 1:N:0:GTAGAGGA+TCGACTAG
AGAGTTTGATCCTGGCCAAGGGGGAGCAGGGTTGAAGATTGGGGTAGAGGGTGGAACGGAGAAAGGATTTCTTTTGTGGCACAAAGAAGAAGGTAAATTGTTTCTTCATCTCATTGTCCG
+
8AGCCGGGGGGGGGGGDEAF?@7 EEGC, CFGGGGS , 6, CCIE8+@@, ,@FCFEC, EFED , ++, 6FF , CFFGGGGGFGGCCGGGGGG? FGGG? 8 FGCCEFGGGGGGGDGGFE? CFGGFFFE
@v00171:45:000000000-AVHUW:1:1101:16824:2135 1:N:0:GTAGAGGA+TCGACTAG
AGAGTTTGATCCTGGCTCAGCACAATGCAAACCATTTCCAGCTGCTTTGTGTAAGGAATAAGGACTGGCTTGAGAAGAAGGGAAGAGAT CTGCCCCTAATATCCCTGATTATCTCAGCAG
+
8ACCCFFFFGGGGGGGGGCFCDESEFF<EEFGFFFEEFA9<8C@8FCE<FDGG, ,EFS8E, , ; , ,FF? , FFFGGGGFGGFGGGGGGGGGGGFIGAQQAF7 FFCAFFGCDCFGIFFGGGGFGG
@v00171:45:000000000-AVHUW:1:1101:8505:2146 1:N:0:GTAGAGGA+TCGACTAG
AGAGTTTGATCCTGGCTCAGTGAATCTTTATTTTTACATAAACAATAGGGGAGAGGAAGCAAT CAGATATACATTTGTCTCAGGTGACCCTCTGAGGTATGACTTTGAATATAATGGGAG
+
8-BCCFGGEFGEGGCCFF9<F9<<FGE , CFFGDFF, ;6C, ;66 ,6<6, ; <@FG, ,BEE, ,6,CEF@, C<E<<FGGGGGIFFAFGG?, : <FG, , , ,C, 6CFGFGGGDAAFF, , CCCF,BDQ
@v00171:45:000000000-AVHUW:1:1101:20286:2167 1:N:0:GTAGAGGA+TCGACTAG
AGAGTTTGATCCTGGCTCAGGCCTCATCTCCCCTCCCCTGAAAACCTGAAATAATCTCCCAGGTTTCCTGGCCTCCACCTTCTTCTTCTCTTATAATCCACTCTCCTCACAGCTGCCACT
+
CCCCCGGGGGGGGGGGGGGGGGCGGGFEFFGFFFGCFFG, ,C<<E;C, ,; , CF<FGE@CF, ; , CAFCEF@8EFGAFEFCDGCFGGGGGGGGFCFFGGFGFGCFCGGFFGF8 , CFFGGSFH
@v00171:45:000000000-AVHUW:1:1101:12133:2167 1:N:0:GTAGAGGA+TCGTCTAG
AGAGTTTGATCCTGGCTCAGCCTCCCCAAGTGCTGCGACTAAATGTGTGCGCCACTGTGCCTGGTCTGCTTTCTTTTCTTTCGGGTATATTGCTTGGCCATAAGTTGACTCTGTGTTCCT
+

ACCCCGGGGGGGGGGGGGGG8CC=;6, , , ,CFC,C,8+C++, , ; <E,6,C7+,8: CEF<ECE9<FFG8 , C<AE, C<C, <@CEEGE<BFFCF,CE9, ,666F ,CEF<, , :,, : CCF, =, <E

22



Phred quality score, Q

* The quality is related to the probability (p) that the base Phred quality | Probability of Base call
called is incorrect — basecalling error score (Q) incorrect base call | accuracy

1 0]
Q = —10logop 10 1in 10 90%
20 1in 100 99%

* Quality scores are encoded as their representative ASCII 30 1in 1,000 99.9%
(American Standard Code for Information Interchange) 40 1in 10,000 99.999%
values with some offset ) ;

ASCII(quality + offset) = FASTQ encoded quality 50 11in 100,000 939.999%
60 1in 1,000,000 99.9999%

* If you have a quality of 30, the quality with offset will be
30 + 33 =63, corresponding to “?”



ASCI|
Table
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Decimal

Character

Decimal

Character

Decimal

Character

Decimal

Character

0 [NULL] 32 [SPACE] 64 @ 96

1 [START OF HEADING] 33 ! 65 A 97 a
2 [START OF TEXT] 34 ! 66 B 98 b
3 [END OF TEXT] 35 # 67 C 99 C
4 [END OF TRANSMISSION] 36 S 68 D 100 d
5 [ENQUIRY] 37 % 69 E 101 e
6 [ACKNOWLEDGE] 38 & 70 F 102 f
7/ [BELL] 39 ! 71 G 103 g
8 [BACKSPACE] 40 ( 72 H 104 h
9 [HORIZONTAL TAB] 41 ) 73 I 105 [
10 [LINE FEED] 42 * 74 J 106 j
11 [VERTICAL TABL] 43 + 75 K 107 k
12 [FORM FEED] 44 , /6 L 108 |
13 [CARRIAGE RETURN] 45 - 77 M 109 m
14 [SHIFT OUT] 46 . /8 N 110 n
15 [SHIFT IN] 47 / 79 ©) 111 0
16 [DATA LINK ESCAPE] 48 0 80 P 112 p
17 [DEVICE CONTROL 1] 49 1 81 Q 113 q
18 [DEVICE CONTROL 2] 50 2 82 R 114 r
19 [DEVICE CONTROL 3] 51 3 83 S 115 S
20 [DEVICE CONTROL 4] 52 4 84 T 116 t
21 [NEGATIVE ACKNOWLEDGE] 53 5 85 U 117 u
22 [SYNCRHONOUS IDLE] 54 6 86 V 118 Vv
23 [END OF TRANS. BLOCK] 55 7 87 W 119 W
24 [CANCEL] 56 8 88 X 120 X
25 [END OF MEDIUM] 57 9 89 Y 121 y
26 [SUBSTITUTE] 58 : 90 Z 122 z
27 [ESCAPE] 59 ; 91 [ 123 {
28 [FILE SEPARATOR] 60 < 92 \ 124 |
29 [GROUP SEPARATOR] 61 = 93 ] 125 }
30 [RECORD SEPARATOR] 62 > 94 A 126 ~
31 [UNIT SEPARATOR] 63 ? 95 127 [DEL]
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Reads quality assessment

* Quality assessment is an absolute necessity when analyzing any dataset

* Many problems can be stopped at this point before they start — you won’t waste time
analyzing bad data, for example

* What to look for when performing quality assessment:

* Low read depth — bad for any analysis

* Lingering adapters/primers = poor genome assembly and mapping
* Low quality bases or PCR duplicates - poor variant calling

e Small length reads - adds additional time but no value

* Simply, you have to make sure that the experiment worked



FastQC

» Great tool for assessing the quality of
FASTQ files

* Comes as both a graphical user interface
(GUI) and command line interface (CLI)

* The GUI is great if you have one or two
sets of FASTQ reads you want to quality
assess

* The CLI is better if you have lots of FASTQ
reads you want to quality assess

1/16/2020

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Babraham
Institute

FastQC

C&S Babraham Bioinformatics

About | People | Services | Projects | Training | Publications

A quality control toal for high throughput sequence data

Java

A suitable Java Runtime Environment
Requirements

The Picard BAM/SAM Libraries (included in download)
Code Maturity Stable. Mature code, but feedback is appreciated.

Code Released Yes, under GPL v3 or later.
Initial Contact Simon Andrews

Download Now

B ECE X

Quality scores across all bases (Illumina =v¥1.3 encoding)

M 777IIIIIIIIIIIIII
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https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

FastQC: Per base sequence quality

Per base N content

@ FastQC — O *
SRR5755105_1.fastq
— This graph shows the per
P“mmmmmwz I000000p0n0gnnaANAnONAARETIT LT basesequemce(nﬂﬂﬁy
Per base sequence content E!I'l satll] The red region denOteS
32 i
2 acceptable, and green is
Sequence Duplication Levels 22 | | gOOd q U a | ity

File Help
Quality scores acrass all bases (Sanger [ Ilumina 1.9 encoding)
Per sequence quality scores | I I I I ! il I I I _____ _
T
Per sequence GC content |45 bad q ua |ity Ora nge iS
V4

Sequence Length Distribution 24

Cwverrepresented sequences 18

COOOOOELOLO

Adapter Content 16
14

1z
10

Kmer Content

g

[ L

1 3 5 7 9 20-24 40-44 60-64 80-54 105-109  135-139  165-169  195-199  225-Z29
Position in read {bp)




FastQC: Per sequence quality scores

@ FastQC - i bt
File Help
SRR5755105_1.fastg
@ Basic Statistics . N
Quality score distribution over all sequences
@ Per base sequence quality fwverage Qualty per read

) 450000
Per sequence quality scores

:: Per base sequence content  |4n0000

- This graph shows the
@) re bes e quality distribution of each
Sequence Length Distribution 200000 Seq u e n Ce

350000

@ Sequence Duplication Levels
250000
@ Overrepresented sequences
200000
Adapter Content

Kmer Content 150000

100000

50000

23456789 11 15 15 17 19 21 23 25 27 29 31 33 35 57

Mean Sequence Quality (Phred Scare)
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FastQC: Per base sequence content

1/16/2020

This graph shows the per
base composition across
the read length. For

Q FastQC
File Help
SRR5755105_1.fastg

@ Basic Statistics

Per base sequence quality

Per sequence quality scores

200

Y
| Per base sequence content
4

:: Per sequence GC content

Per base N content

@ (o)

:} Sequence Length Distribution
Sequence Duplication Levels
Cverrepresented sequences

Adapter Content

0006

(4 ) kmer Content

50

40

30

20

10

Sequence content across all bases

random library selection,
you expect 4 parallel lines.

T
ol
ok
iz

13 5 7 9 20-24 40-44 60-64 S0-54 105-109 135-135  165-169  195-199  225-229

Pasition in read (bp)

e
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Sequence quality control (trimming)

* Given the initial sequence quality, you will want to perform trimming to
ensure maximum quality

* Primer/adapter removal
e Read quality trimming

* Read quality filtering

* Read length filtering



Quality control with Trimmomatic

* Trimmomatic is a command line tool
used for performing quality control on
reads

e Performs a variety of filtering
operations for lllumina paired-end and
single end data

* These options typically require users to
provide some quality or quantity
threshold

1/16/2020

http://www.usadellab.org/cms/?page=trimmomatic

Trimmomatic: A flexible read trimming tool for lllumina NGS data

Citations

‘‘‘‘‘‘‘‘‘

Bolger, & M., Lohse, M., & Usadel, B. (2014). Trimmomeztic: A flexible timmer for lllumina Sequence Data. Sioinformatics
btu170.

Downloading Trimmomatic

Version 0.38: binary, source and manua

Version 0.36: binary and source

Quick start

32


http://www.usadellab.org/cms/?page=trimmomatic

Outline

/ Slides courtesy of: \

David Gifford MIT

Foundations of Computational and Systems Biology
https://www.youtube.com/watch?v=2YW2AeDE6wU

Ben Langmead JHU
Algorithms for DNA sequencing

https://www.youtube.com/playlist?list=PL2mpRORYFQsBiCWVIJSvWAO30J2t7DzoHA

* Genome assembly

» Reference versus de novo assembly Pavel Pevzner UCSD

* De novo assembly algorithmic paradigms Bioinformatics Algorithms: An Active Learning Approach
o Overlap Iayout consensus https://www.youtube.com/watch?v=f-ecmECK7Iw
* de Bruijn graphs
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Genome assembly

S L B __N 52 E= EEm EE =} =T D | BN N L B B ]
equence e S m, emmmLE TR 0 R mEE
reads Oy - — 15— ——
contigs
s R == S o I

1 Read pair Read pair Read pair
Mapped . | . | | | |
scaffolds OO ] O L @
Genome
mop /= O——O——O0—0 O o—0 o~/

\r—/

1/16/2020
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Genome assembly

1/16/2020

Whole-genome “shotgun” sequencing starts by copying and
fragmenting the DNA

(“Shotgun” refers to the random fragmentation of the whole
genome; like it was fired from a shotgun)

Input:

Copy:

Fragment:

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

GGCGTCTA TATCTCGG CTCTAGGCCCTC ATTTTTT
GGC GTCTATAT CTCGGCTCTAGGCCCTCA TTTTTIT
GGCGTC TATATCT CGGCTCTAGGCCCT CATTTTTT
GGCGTCTAT ATCTCGGCTCTAG GCCCTCA TTTTTT

35



Genome assembly

Assume sequencing produces such a large # fragments that almost

all genome positions are covered by many fragments...

CTAGGCCCTCAATTTTT
CTCTAGGCCCTCAATTTTT
GGCTCTAGGCCCTCATTTTTT
Reconstruct CTCGGCTCTAGCCCCTCATTTT
this TATCTCGACTCTAGGCCCTCA
TATCTCGACTCTAGGCC
TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

—> GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

1/16/2020

From these

36



Genome assembly

...but we don’t know what came from where

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
Reconstruct TCTATATCTCGGCTCTAGG
this GGCTCTAGGCCCTCATTTTTT

CTCGGCTCTAGCCCCTCATTTT From these

TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

e R EEEEEEEE I IR R i e e R R e e B B
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Reference versus de novo assembly

* Reference based (guided) assembly
* Assemble genome via comparison with reference genome assembly
* More for re-sequencing ... not really assembly per se
» Uses short read mapping algorithms (treated elsewhere)
* Most relevant for variant calling

* De novo (shotgun) assembly
* Assemble genome based on sequence reads alone
* Comparison between read sequences or k-mers
* Graph traversal and genome reconstruction



Algorithm approaches for de novo assembly

e Overlap Layout Consensus (OLC)
* Compares sequence reads to find overlaps
e Construct directed read overlap graph
* Trace (Hamiltonian) path through graph for assembly
* Determine sequence of assembly via consensus of overlapped reads

 de Bruijn graph (DBG)
* Parse reads into k-mers ... sequence substrings of length k
* Create directed k-mer graph by joining k-1 prefix-> suffix
* Trace (Eulerian) path through graph for assembly
* Determine sequence of assembly directly from k-mer graph



Overlap layout consensus (OLC)

* Overlap — build overlap graph from sequence reads

 Pairwise comparison of all reads (computationally costly, particularly for repeats)
* O(N?) where N is number of reads or O(N log N) at best with indexing
* Join reads as nodes in directed graph if overlap exceeds threshold

* Layout — traverse overlap graph to join reads into contigs
e Hamiltonian path problem — visit each node in graph exactly once — NP hard problem

* Consensus — determine contig sequences by consensus (most common) bases at
each position of overlapped reads



Read Overlaps
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If a suffix of read A is similar to a prefix of read B...

TCTATATCTCGGCTCTAGG

TATCTCGACTCTAGGCC

..then A and B might overlap in the genome

TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
TATCTCGACTCTAGGCC
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Read Overlaps

More coverage leads to more and longer overlaps

CTAGGCCCTCAATTTTT
CTCGGCTCTAGCCCCTCATTTT
TCTATATCTCGGCTCTAGG
GGCGTCGATATCT

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
CTAGGCCCTCAATTTTT
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCTATATCT more coverage

less coverage
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Overlap graph

TCTATATCTCGGCTCTAGG

TATCTCGACTCTAGGCC

TATCTCGACTCTAGGCC

CTCGGCTCTAGCCCCTCAT

1/16/2020



Directed graphs

Directed graph G(V, E) consists of set of vertices, V and set of
directed edges, E

Directed edge is an ordered pair of vertices.
First is the source, second is the sink. a b

Vertex is drawn as a circle

Edge is drawn as a line with an arrow O
connecting two circles C d
Vertex also called node or point V=1{a,bcd}
E={(a b) (a0, (cb)}
Edge also called arc or line / '\

Source Sink

Directed graph also called digraph

1/16/2020



Overlap graph

Each node is a read

[CTCGGCTCTAGCCCCTCATTTT ]

Draw edge A -> B when suffix of A overlaps prefix of B

[CTCGGCTCTAGCCCCTCATTTT ]

[GGCTCTAGGCCCTCATTTTTT ]

1/16/2020
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Overlap graph

Nodes: all 6-mers from GTACGTACGAT
Edges: overlaps of length >4

GTACGT

1/16/2020
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Layout — graph traversal for assembly

1/16/2020

Nodes: all 6-mers from GTACGTACGAT

Edges: overlaps of length >4 Hamiltonian path

5 graph traversal
that passes
through each
node (read) only
once

NP complete
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consensus

1/16/2020

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

l L]

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Take reads that make
up a contig and line
them up

Take consensus, i.e.
majority vote

At each position, ask: what nucleotide (and/or gap) is here?

Complications: (a) sequencing error, (b) ploidy
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The challenge of repeats

Stretches of

Reads

1/16/2020

Picture the portion of the overlap graph involving repeat A

F——Repeat A —

v L Ri
g Z g‘; Assume A is longer
Q L R, than read length
Lots of overlaps
among reads from A

L DN, | RN RN | R R

L —\\, EEEEENE /_ R,

Ls —//‘ 10 O \\‘~— R;

L, DN (TT1T1] . 'IEEmm R,

.....................................

Even if we avoid collapsing copies of A, we can’t know which paths
in correspond to which paths out
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Overlap Layout Consensus (OLC)

» Computationally costly and slow
* Overlap — All-against-all read pair comparison — O(N?)
e Layout — Hamiltonian path problem is NP complete
* Repeats break assembly
 Better for long reads (comeback with third generation sequencing?)



de Bruijn graph (DBG)

 Parse reads into k-mers ... sequence substrings of length k
e Counter intuitive ... trying to assemble long contigs by breaking sequences down even further

* Create directed k-mer graph by joining k-1 prefix -> suffix
* Trace (Eulerian) path through graph for assembly
* Determine sequence of assembly directly from k-mer graph



k-mers

“k-mer”is a substring of length k

50 GGCGATTCATCG

mer: from Greek meaning “part”

A 4-mer of S: ATTC
All 3-mersof S: GGC
GCG
CGA
GAT
ATT
TTC
TCA
CAT
ATC

TCG

I'll use “k-1-mer” to refer to a substring of length k - 1

1/16/2020
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de Bruijn graph construction

* Break sequences down into k-mers (3-mers), which will be edges in graph
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de Bruijn graph construction

» Represent every k-mer as an edge between its prefix and suffix k-1-mers
* Collapse all nodes with identical labels



de Bruijn graph construction

» Construct nodes of graph by connecting k-1-mer prefixes and suffixes

B0 -0 @0 B O - @ GO

1/16/2020
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de Bruijn graph construction

* Collapse identically labeled nodes

@“ﬁ@@f@@%@f@%@%)
@ 50 0 T o 3 e
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de Bruijn graph construction

* Collapse identically labeled nodes

TAA AAT _ATG _TGC _GCC _CCA CAT ATG _TGG GGG _GGA _GAT __ATG _ TGT _ GTT

) —~EA—~ED (19 —~6)~C)—~A—~aD)—19—G)— ) —EA—@) -G~ —~D

1/16/2020
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Find Eulerian path through de Bruijn graph

CCA/ Gee e Can be multiple Eulerian paths through graph
¢ e Solution: disconnect graph into multiple (non-
CAT = branching) components = contigs
TAA _ AAT : . b . |
@ Q 1@ @ @ Contlgs gant en be connected using read-pair
TGT GTT information
ATG
GAT o * Helps specify best path through branching paths in

graph
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de Bruijn graph (DBC)

* Computationally more efficient and faster
* Scales linearly as O(N), where N is the number of k-mers
* Eulerian path problem is more tractable than Hamiltonian path
* Repeats break assembly
 Very sensitive to sequencing errors (greatly inflates # of k-mers)
* Loses sequence context of reads
 Better for short reads (how will this be adopted for third generation sequencing?)

* Choice of k-mer size very important
* Empirical decision — try out different sizes
e Odd k-mer size to avoid palindromes
* Longer k-mers better resolution but use much more memory
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STRATEGIES FOR THE
SYSTEMATIC SEQUENCING
OF COMPLEX GENOMES

Eric D. Green

Biology and medicine are in the midst of a revolution,
the full extent of which will probably not be realized for
many years to come. The catalyst for this revolution is
the Human Genome Project' and related activities that
aim to develop improved technologies for analysing
DNA, to generate detailed information about the
genomes of numerous organisms, and to establish pow-
erful experimental and computational approaches for
studying genome structure and function. The past few

Recent spectacular advances in the technologies and strategies for DNA sequencing have
profoundly accelerated the detailed analysis of genomes from myriad organisms. The past few
years alone have seen the publication of near-complete or draft versions of the genome sequence
of several well-studied, multicellular organisms — most notabty, the human. As well as providing
data of fundamental biological significance, these landmark accomplishments have yielded
important strategic insights that are guiding current and future genome-sequencing projects.

There are many p ial uses of g uence
data. In some cases. a detailed and accurate sequence-
based blueprint’ of a genome is required (for example,
to establish a comprehensive gene catal and/or to
gain insight into long-range genome organization),
‘whereas in other cases, an incomplete survey will suffice
(for example, to acquire information about the repeti-
tive sequences in a genome and/or to carry out simple,
non-comprehensive comparisons to sequences from

years have seen a remarkable do in acc

other: i .Importantly, the intended use(s) of

ments related to DNA sequencing, with genome
sequences being generated for several key experimental
organisms, including a yeast (Saccharomyres cerevisiae),
anematode (Caenorhabditis elegans), a fly ( Drosophila

I: ). aplant (Ar is thaliana) and the
human (Homao sapiens). Collectively, the generation of
these sequence data and others is launching the
‘sequence-based era’ of biomedical research.

Associated with the above accomplishments has
been the refinement of existing strategies for genome
sequencing, as well as the development of new ones.

these are. hes that make ive use of

genome-sequence data must be carefully considered
‘when choosing a specific sequencing strategy and defin-
ing the end point of a particular project. These issues, as
‘well as the plans for future sequencing initiatives by the
Human Genome Project. are also discussed.

¥

Shortly after the Human Genome Project began in 1990,

pilot projects were initiated that aimed to sequence the

smaller genomes of several key model organisms (for

example, Escherichia coli, 8. cerevisiae, C. elegansand D.
I 1 ilable t:

using hnologies. At the time,

large-insert clones and associated physical maps. some
that take a whole-genome approach without using
clone-based physical maps, and others that use a hybrid
strategy that involves elements of the other two. Each of
these general strategies for genome sequencing is

the general idea was that the eventual sequencing of the
human and other vertebrate genomes could not begin in
earnest without th I of anew, ionary
sequencing techmniags In reality, such Were
not forthcoming. However, numerous incremental
improvements, each evolutionary in nature, were made
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Resource

Velvet: Algorithms for de novo short read assembly

using de Bruijn graphs
Daniel R. Zerbino and Ewan Birney"

EMEL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CE10 15D, United Kingdam

We have developed a new set of algorithms, collectively called “Velver,” to manipulate de Bruijn graphs for genomic
sequence assembly. A de Brufin graph is a compact representation based on short words (k-mers) thar is ideal for
high coverage, very short read [Z5-50 bp) data sets. Applying Velvet to wvery short reads and paired-ends
information only, one can produce conrigs of significant length, up to 50-kb N30 length in simuladons of
prokaryotic data and 3-kb N50 on simulated mammalian BACs. When applied to real Solexa data sets without read
pairs, Welvet generated contigs of —B kb in a prokaryote and 2 kb in a mammalian BAC, in close agreement with our
simulated results without read-pair information. Velver represents a new approach to assembly that can leverage
very short reads in combination with read pairs to produce useful assemblies.

[Supplemental material is available online at www.genome.org. The code for Velver is freely available, under the
‘GMU Public License, at httpz/ / www.ebLac.uk/! —zerbino/ velver]

Sequencing remains at the core of genomics. Applications in.
elude determi the gendme sequence of 3 nEw species, deter.
ning the genome sequence of an individual within a popula-
sequending BNA molecules from a particular sample, and
using DNA sequence as a readout assay in molecular biology
techniques. Determining the compléte genome sequence of
species remains an important application of sequencing, and de-
spite the success in determining the human (Intemational Hu-
man Genome Sequencing Consortium 2000; Venter o al. 2001),
mouse (Waterston et al. 2002), and fumeérous other genornies,
this is a tiny sample of the millions of species in the biosphere.

Recently, mew sequencing technologies have emerged
Metzker 2005), for example, pyrosequencing (454 Sequencing)
(Margulies et sl 2005) and sequencing by synthesis (Salesa)
(Bentley 2006), both © fally available. C d to tradi-
tional Sanger methods, these technologies produce shorter resds,
currently ~200 bp for pyrosequencing and 35 bp for Solexa. Untl
recently, very short read information was only used in the con.
text of a known by, either for ing indi-
widuals of the same species as the refesence, or readout 28ays—
for example, STAGE {(Kim et al. 2003) and ChIPSeq (Johnson et al
2007).

A critical stage in genome suencing is the asembly of
shotgun reads, or piecing together fragments randomly extracted
from the sample, W forim a set of contiguous sequences (contigs)
representing the DNA in the sample. Algorithms are available for
whole-genome shotgun (WGS) fragment assembly, including:
Atlas (Havlak et al. 200d), ARACHNE (Batzoglou et al. 2002),
Celera (Myers et al. 2000), PCAP (Huang et al. 2003}, plrap (P
Green, http:fwww_phrapoorg), or Phasion (Mullikin and Ning
2003). All these progrand rely on the overlap-layout conserdus
approach (Batzoglou 2005), representing each read as a node and
each detected overlap 45 an arc between the appropriate nodes.
These methods have proved their use through numeros. de novo
genome assemblies

Very short reads are mot well suited to this traditional ap-

'Corresponding author.
E-mall c.uk; fax 441223454 458,

Article publshed online before print. Articke and publication date are at hetpy |
www_gename.cr/egidal/10.1101/gr.074492.107

proach. Because of their length, they must be produced in large
quantities and at greater coverage depths than traditional Sanges
sequencing projects. The sheer number of reads makes the over
Lap graph, with one node per read, extremely lange and lengthy to
compute. With long reads, repeats in the data are disambiguated
by careful metrics over long overlaps that distinguish repeat
matches from real overlaps, using, for example, high-quality base
dissgreements. With short reads, and cotrespondingly shor
overlaps to judge from, many reads in epeats will have only a
single o 5o base differences. This leads to many maore ambiguous
connections in the assembly.

The EULER assembler (Pevemer et al. 2001) adogted a fun-
damentally different approach using de Bruijn graphs. In this

i oof data, are mot ized around reads,
but around words of k macleotides, or k-mers. Reads are mapped
a5 paths through the graph, going from one word to the next in
a determined order. Several teams (Shah et al. 2004; Bokhar and
Sauer 2005; Myers 2005; Jiang et al. 2007) have snce expanded
on the use of de Bruijn graphs for sequence assembly. The fun-
damental data structure in the de Bruijn graph B based on k-
mers, not reads, thus high redundancy is naturally handled by
the graph without affecting the number of nodes. In addition,
each repeat is present only once in the graph with explicit links
to the different start and end points. Depending on available
information, it can be either resolvable or not, but it & readily
identifiable. Mis-assembly errors are therefore more easily
avoided than with overlap graphs. Finally, searches for overlaps
are simplified, 2 overlapping reads are mapped onto the same
arcs and can easily be Bollowed simultanecusly.

Despite the attractivenes of the de Bruijn graph data strue-
ture For shaort resd assernblies, it has mot been used extensively in
current ionsbased hosds. Chaisson et al.
(2004} and Sussdquist et al. (2007) suggested ways of using these
graphs specifically for short read assembly (100=200 bp), but not
for very short reads (25-50 bip). More recently, programs such as
SSAKE (Warren et al. Z007), SHARCGS (Dohm et al. 2007), and
VCAKE (Jeck et al. 2007) implicitly use this framework, but at a
local level. With the advent of highly cost effective very short
resds, de Bruijn grapl-based methods will grow in ubility. How-
ever, it is neossary 1o develop efficient and robust methods to
manage experimental errors and repeats.

18:821-A29 ©2008 by Cold Spring Harbor Labaratory Press; 1555 1088-9051/08; wwiw gencene.org
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Web resources

* MIT: Foundations of Computational and Systems Biology
https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biology-spring-2014/

* JHU: Ben Langmead Teaching Materials

http://www.langmead-lab.org/teaching-materials/

* UCSD: Bioinformatics Algorithms: An Active Learning Approach
https://www.youtube.com/channel/UCKSUVRs2N2FdDNvQoRWKhoQ
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Outline

* Historical context for sequencing and NGS

* Sanger sequencing
* Roche’s 454

* [llumina Sequencing

e PacBio + Oxford Nanopore oTes
e FASTQ and quality scores e

@®e

* Quality control o«
* FASTQC

* Genome assembly
» Reference versus de novo assembly
* De novo assembly algorithmic paradigms
* Qverlap layout consensus
* de Bruijn graphs

* Genome assembly metrics
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Assessing the “goodness” of an assembly

* The goal of genome assembly is to * Goodness of assembly is measured by
vield a finished contig which is exactly three parameters:
the same as the input microbial
gENOME ﬁ Number of bases assembled
Number of assembled contigs (length >

* An assembly is deemed good if it can 500bp)

get as close to this goal as possible ﬁ N50 value



N50
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If these are the assembled contigs:
./ ./ / [ [ |

and | order them by length in an ascending manner,
1 e

N50 is the length of contig which is in the center
1 ) ) [ I |
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A good way to combine these three parameters

Assembly size X NSO)

Assembly score = log ( Number of contigs

* Developed by Lee Katz and Lava



QUAST

QUAST

Quality Assessment Tool for Genome Assemblies by CAB
* Excellent utility from the SPAdes group

# complete genes

* Produces nice graphical output of u:l':L
genome assembly sizes and assembly ““:;‘ W IIII I -
metrics . L “\

SO B SFhces B e ved 50
YOAPderovo - SO [ B

* Project contains 3 tools for assembly
evaluation and comparison
* QUAST: regular genome assemblies
* MetaQUAST: metagenome assemblies
* |carus: contig alignment visualization
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Additional questions?



