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Our Project

Purpose:

Investigate an unknown outbreak pathogen using raw genome
sequence data from the Centers for Disease Control and
Prevention (CDC) foodborne illness surveillance

outbreak investigations

Goal:

Identify and characterize the pathogenic organism, make
recommendations for the outbreak control, and build a public
webserver that automates the computational steps

Objective for “Gene Prediction”:

From assembled genomes, predict genes or features using
different prediction methods and evaluate selected tools on their
accuracy and performance

Centers for Disease

Control and Prevention
National Center for Emerging and
Zoonotic Infectious Diseases




What is Gene
Prediction?

Identification of the regions of
genomic DNA that encode genes,
which are fragments of DNA that
encodes a functional molecule:

Protein-codinggenes

RNA genes

May also include other functional
elements (i.e. regulatory regions)

Ab-initio

Homology

based

tRNA

rRNA




Prokaryotic
Genome

* Have a high gene density and do
not containintronsin their protein
codingregions

Genes are called

Open Reading Frames or
“ORFs” (include start &
stop codon)

(A) Human
Vag V29-1 TRY4 TRYS

0 10 20 30 40 50 kb

(B) Saccharomyces cerevisiae
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(E) Escherichia col
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Prokaryotic
Genome (cont'd)

* Prediction of prokaryoticgenes
tends to be relatively simpler with
contiguous ORFs

 However, overlapping ORFs and
short genes can cause issues

* Each gene is an ORF, but not every
ORF is a gene

T

Transcription

X OREF (open reading frame)
start

Start codon Stop codon

/ \

.CAGATTACAGATTACAGATTACAGGATAG .

Frame 1 | T I I Il I I I I Il I ]

Frame 2 | ] Il I Il Il Il || Il Il |

Frame 3 | Il i I Il i ! | Il Il ]




Domain: Bacteria

Phylum: Proteobacteria

Cha raCteriStiCS Class: Epsilonproteobacteria
of
Campy/ObaCter Family: Campylobacteraceae
Spp Low G+C content (guanine-cytosine content) - GC ration is about 30

percent

DNA ranges between 1.6-1.7 Mbps and containsa high content of
adenineand thymine

Campylobacter jejuni is the leading cause of bacterial diarrhea as well as
the causative agent of gastroenteritisamong human beings and animals.




Makes predictions via comparisons with
sequences of previously known genes

Extrinsic information
Homology

Methods Can be used to validate/support Ab Initio
findings

Limited by the use of no new knowledge




BLAST+
Homology Tool #1

Identifying species, locating domains,
establishing phylogeny, DNA
mapping, comparison

1. Break query into words of
length W

2. Align words with sequence in
database & identify matches

Calculate T score for matches

Extend sequence in both
directions until score falls
below cutoff (HSPs)

Report hits that meet
or exceed BLAST cutoff for
statistically significant hits

Query

dajtic ac

Chory wornd
1} bases

Cuery word
i1 hases

L]
1
Query word |
11 hases i
i
]
]

'.\[L'tgr:ultagg

Index (Neighborhood words that

are present in or have been extracted
from database sequences)

acttcatliagc

cctgcattage

actgcattagg! actgcattagg
”U\\/ ‘“ o

“neighborhood word™ that
is present in a database sequence.

gacgcatctaa



GHOSTZ

Homology Tool #2

A new faster homology search method using
database subsequence clustering

1.

Sequences are extracted froma
database & similar ones are clustered

Constructinto hash tables

Use hash tables to select seeds for
the alignments from representative
sequencesin the clusters

Distance between a query
subsequence and
cluster representativeis calculated

Lower bounds calculated

Similarity Filtering—if computed
lower bound isless than orequal to
distance threshold, continue

Ungapped extension

Chain filtering

Gapped extension

Trace back

Cluster 1

Cluster O
10



Homology Tools Comparison

_ BLAST GHOSTZ

PROS * 50 times faster than dynamic e 200 times more efficient than
programming BLAST
 Computer storage efficient * Does not depend on search
e Allows for gapped matches sensitivity
CONS * Less accurate than Smith- * Requires more computer storage
Waterman

* May have low sensitivity

11




Homology Tools Comparison (cont'd

Correct
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80%
60%
40%
20%
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—8— BLASTX —+— GHOSTZ —e—RAPSearch —e—BLAT

1.0E-28

1.0E-26

1.0E-24

1.0E-22

1.0E-20

1.0E-18

Computation time (s)

GHOSTZ 460.8
RAPSearch 1285.5
o o= ™~ O 0w s NN D
Tﬁﬁﬁﬂ?ﬂ?ﬁ?ﬂ?ﬁ BLAT 2514.9
W W W W oW oW oW w g
S ©o0oo0ooQoaQgg
e TR T B B B R BLASTX 1203585.2
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Acceleration ratio

261.3

93.7

47.9

1.0

Suzuki, S., Kakuta, M., Ishida, T., & Akiyama, Y. (2015). Faster sequence homology searches by clustering subsequences. Bioinformatics (Oxford, England), 31(8), 1183—1190.
doi:10.1093/bioinformatics/btu780 12




Homology Tools Pipeline

BLAST file

against database Compare results Choose most

to SSEARCH for accurate tool for
GHOSTZ file dCcuracy validation

against database

Reference Genome: Campylobacter jejuni from NCBI (NC_002163.1)
Query FASTA File: NCBI Reference Sequence NR_041834.1

13




Ab Initio Methods Prokaryotic Gene Structure

Prokaryotic gene prediction begins with ORF finding

-
- -~

I [T 1

Inspect the input sequence and
searches for traces of gene

presence

Simplest method is to inspect ORFs s [T R
ATG |ABA | GCA |ATG

Relies on: R T
Possible Alternate

* Probability models start start

* Specific DNA motifs
GEGEIS Because of the possibility of alternate start

Markov Models and Dynamic sites, it’s not unusual for several ORFs to share
Programming a common stop codon

An ORF finder needs to be able to find overlapping ORFs, whether they
end with the same stop codon, or overlap in a differentframe

14



Hidden Markov
Models

Markov Model is a chain structured

process where future states depends
only on the present state, not on the
sequence of events that preceded it.

Used to model randomly changing
systems.

Hidden Markov Model (HMM) is
a statistical Markov model with
hidden states

Viterbi Algorithm used to find the most
likely sequence of hidden paths.

Ry iyl 80 % sunny
%@'ﬁﬁ*@ — %;*},-—-—-—----' f/@\-’ — ? 15% cloudy
. g o 5% rainy

State: sunny cloudy rainy sunny
| )

1
State transition probability (table/graph)

Output format 1:
Output format 3:

Today Tomorrow Probability

0.5
sunny sunny 0.8
sunny rainy 0.05
sunny cloudy 0.15

0.15 0.3
rainy sunny 0.2
rainy rainy 0.6 2 02

i loud 0.2 1<
ey condy 0.8 ;@,— 0.05 sl
ek '\/

cloudy sunny 0.2

cloudy rainy 0.3 0.2

cloudy cloudy 0.5

Weisstein et al. A Hands-on Introduction to Hidden Markov Models

Example of a Hidden
Markov Model

0.6




Ab Initio Tools

% Correct % Correct

Gene Finder 7 # Genes on # Genes on fiCorrect (cgtelgied fro?ne I(lferi)m
Genes  the + Strand  the - Strand Genes to the all found

Original) genes)

Original 6061 2993 3067 6061 100,00% 100,00%
Prodigal 6055 3014 3041 5286 89,14% 87,30%
FGenesB 6197 3094 3103 5070 85.,50% 81,81%
Glimmer3.0 6276 3100 3176 5043 85,04% 80,35%
GeneMarkS 6100 3043 3057 5006 84.,42% 82,07%
JCVI 6270 3098 3172 5036 83,10% 80,32%
GeneMarkHMM 6129 3055 3074 4920 82.97% 80,27%
Rast 6297 3116 3181 4940 81,52% 78,45%
MED 7475 3708 3767 4747 80,05% 63,51%
Maker with model 6149 3065 3084 4588 75,71% 74,61%
Maker 5884 2904 2980 4370 72,11% 74,27%
Augustus 5268 2587 2681 3529 59,51% 66,99%
AMIGene 6154 3077 3077 2967 50,03% 4821%
EasyGene 3150 0 3150 2570 43,34% 81,59%

A
Missed MS Missed COG genes
confirmed genes (not MS)
Algorithm (from 89,466) (from 287,237)
GeneMarkS 376 1467
Glimmer3 496 1990
Prodigal 217 1389
GeneMarksS-2 181 1147
B
False predictions False predictions
overlapping overlapping
Algorithm MS-confirmed genes COG genes (not MS)
GeneMarks$ 352 2046
Glimmer3 921 6435
Prodigal 211 1339
GeneMarksS-2 114 932
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GeneMarkS-2/
Gene Mark S
ADb Initio Tool #1

Uses HMM and a self training
algorithm (non supervised) to

N
atypical coding region

| signature codon | signature

|
|
|
p red I ct gen es. : promoter spacer ) :_) upstream start downstream
|
|
|
|

|
|
|
|
|
| |
. | extended |
5t Order HMM for COdlng and : upstream signature I : archaea /\ bacteria :
d 2 R e | |
2"% order for non-codingregions. | T i T 6C30% ) | |
2 del | GC 31% |

Uses a complex model to predict geneme moce | ! |
the prokaryoticgene stend-alone gene oo L ccTok ) |
' N e | I___Szcz--z--z---=Z2

. fo . int f i | —_ | — |

Identifies several different types of — b

. . . _——— e ‘
distinct sequence patterns. overiapping genes | LI | = | &= |

The model which yields the
highest log-odds score is selected
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GeneMarkS-2
(cont'd)

* Classifies the genome into 4 distinct groups:

* Group A: Typical Model of Prokaryotes
having RBS sites having (SD)Consensus

Group B: Atypical Model having
RBS sites not having SD consensus

Group C and D: Represent
Bacterial and Archeal Genomes
(Leaderless Transcription).

Group X: Weak, Hard to
classify regulatory signal patterns

* Algorithm stops after 10 iterations in the
final prediction step, if it doesn’t converge

[

Atypical
models

Genomic
sequence

Y

P

Prediction Step 1:

il _ Only Atypical Models

1

First estimation of
Typical Models

]

|

Y

Atypical and Typical

models, without Start

. Models

( - N
Prediction Step 2:

J

N

-

Alignment of
upstream regions

Y

e

‘\
Identification of the

gene start model
(Groups A-D, X)

4>[ Prediction Step ] [

Estimation of All
Parameters

]

Converged? No

\ Yes

Final gene predictions
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PRODIGAL

Ab Initio Tool #2

Prokaryotic Dynamic Programming Genefinding Algorithm.

Looks at GC bias for each of three codon positions and
chooses the one with highest GC content.

Prodigal scores every start-stop pair above 90 bp in the
entire genome based on simple GC codon statistics.

Penalizes or gives bonus to intergenic spaces accordingto
gene distance.

Then uses Dynamic Programming to force the programto
choose between two heavily overlapping ORFS.

Sacrifices some genuine predictions to eliminate a much
larger number of false identifications.

19



PRODIGAL (cont'd)

* Provide fast, accurate protein-codinggene prediction. * The results could be biased.
* Runsunsupervised. * To minimize false positives, sacrifices some genuine
predictions.

* Handlesgaps and partial genes.
e Identifies translation initiation sites. e Cannot Handle Introns (Works only on Prokaryotes).
* Open Source.

e Higher accuracy in GC rich genomes.

* Predicts Genes in 3 Formats. (GFF/GenBank/Sequin)

20




Glimmer3

Ab Initio Tool #3

Identify genes within microbial DNA sequences
(bacteria, archaea, and viruses)

Requires training of samples genes

Uses a dynamic programming algorithm to
choose the highest-scoring set of orfs and start
sites.

Glimmer extracts every sufficiently long ORF from
the sequence and scores it by the log-likelihood
ratio of generating the ORF between models
trained on coding versus non-coding sequence.

21



Glimmer3

(cont'd)

Utilizes an Interpolated Markov Model (IMM)
* Combines 1st through 8th order Markov models

In Glimmer3 orfs are scored from 3’ end to 5’ end, i.e.,
from stop codon back toward start codon, which helps
find the start site.

Builds Interpolated Context Model

For each ORF:

* calculatethe probability ofthe ORF sequence in
each of the 6 possible reading frames

e if the highest scoring frame corresponds to the
reading frame of the ORF, mark the ORF as a gene

However, it does not work as well on high-GC genomes
because it trains on long ORFs

22



Ab-initio Tool Comparison: CG Content

60
® GMS2 A * GMS2 " B
¢ Prodigal 50 ® Prodigal

o0
=

=]
=

Glimmer3
40 GMS

Glimmer3
GMS

o
=

L
o

30

5]
=

20

P
=

10

Number of False Negative Prediction
= i
= =
[
Number of False Positive Prediction

=]

20 80 20
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Ab-initio Tool Comparison: Gene Length

Table 3. Statistics of false negative (panel A) and false positive (panel B) gene predictions

A Bins (nt) <150 150-300 300-600 600-900 >900 Total

Algorithm COG genes 362 13,985 65,948 83,745 177,446 341,486

Missed annotated genes (FN)

GeneMarks 136 494 434 192 296 1552
Glimmer3 66 678 1170 341 323 2578
Prodigal 161 639 17 92 78 1387
GeneMark5-2 132 596 370 76 69 1243
B Bins (nt) <150 150-300 300-600 600-900 >900 Total
Algorithm False positives (FP) in simulated sequence

GeneMarkS 3366 5113 1230 177 94 9980
Glimmer3 17,446 5044 1299 228 136 24,153
Prodigal AS2E 2 las2 410 1258 11,853
GenehMarkS-2 792 1541 601 137 77 3148

Panel A: Counts of genes missed by a particular tool ( fafse negatives) among 341,486 COG genes annotated in 145 genomes. The counts are given in
five length bins. Panel B: Counts of false positive predictions made in 144 simulated genomic sequences made from 144 original genomes where anno-
tated intergenic regions were replaced by artificial noncoding sequence (see text). The numbers of false predictions were sorted by length in the same
way as in Panel A. Bold font designates the minimal number of observed errors in each column (for each panel separately). 24




Ab-initio Tool Comparison: Gene Length

Table 3. Statistics of false negative (panel A) and false positive (panel B) gene predictions

A Bins (nt) <150 150-300 300-600 600-900 >900 Total

Algorithm COG genes 362 13,985 65,948 83,745 177,446 341,486

Missed annotated genes (FN)

GeneMarks 136 494 434 192 296 1552
Glimmer3 66 678 1170 341 323 2578
Prodigal 161 639 417 92 78 1387
GeneMark5-2 132 596 370 76 69 1243
B Bins (nt) <150 150-300 300-600 600-900 >900 Total
Algorithm False positives (FP) in simulated sequence

GeneMarkS 3366 5113 1230 177 94 9980
Glimmer3 17,446 5044 1299 228 136 24,153
Prodigal 4525 5321 1453 419 135 11,853
GenehMarkS-2 792 1541 601 137 77 3148

Panel A: Counts of genes missed by a particular tool ( fafse negatives) among 341,486 COG genes annotated in 145 genomes. The counts are given in
five length bins. Panel B: Counts of false positive predictions made in 144 simulated genomic sequences made from 144 original genomes where anno-
tated intergenic regions were replaced by artificial noncoding sequence (see text). The numbers of false predictions were sorted by length in the same
way as in Panel A. Bold font designates the minimal number of observed errors in each column (for each panel separately). 25




1. Use reference sequence on GeneMark-S2, Prodigal
and Glimmer3

2. Prepare MERGED data in 2 ways:
1. All predicted genes: Prodigal + GeneMark-S2
2. Genes by gene length:

Tool Evaluation Plan L. 5300 bps: GeneMarks2

2. <=300 bps: Glimmer3
3. Validate using “best” homology method

1. Check for sensitivity, specificity, etc.

4. Select the best Ab-initio method and proceed with
our data

All predicted
genes \

GeneMark-52

Merged
. GM-52 + Prodigal
Predicted genes
>300 bps

Ab-initio

Reference Methad
Sequence . . o
Prodigal All predicted Merged on gene Validation .
genes / length

Predicted genes
<=300 bps

26



Non-coding
Non-coding RNA
>2L0nt <200 nt
rRNA tRNA Long ncRNA Short ncRNA Other?
(<15%) (>80%)
~—  pRNA . siRNA
) ) —— eRNA . miRNA | 18-25nt
* A non-coding RNA (ncRNA) is an RNA molecule
that is not translated into a protein ~—  gsRNA (e
piRNA 28-33 nt
e transfer RNAs (tRNAs), ribosomal RNAs (rRNAs) . lincRNA
and small RNAs(sRNAs) ~ snoRNA ' sdRNA
— NAT

70-200 nt 17-27 nt

* Role of ncRNA in bacterial genomes:

* Protein synthesis/Translation (tRNA and
rRNA)

* Gene regulation (sRNA)

* Related to antibiotic resistance
27




ARAGORN
tRNA Tool

* Homology based tool

* Uses the heuristic algorithms
that score the tRNA
and tmRNA genes based
on their sequence
and secondary

structure similarities.

an effective tRNA search
program, with

sensitivity better than other
current heuristic tRNA search
algorithms.

Lineage Genome No. of tRNAs detected Search time (s)°
ARAGORNc¢ tRNAscan-SE4 ARAGORN-® tRNAscan-SE!

Archaea M. jannaschii 37 37 1.4 With —A 24
Bacteria E.coli O157:H7 104 103 5.2 With -B 112
Eukaryota S.cerevisiae 274 275 11 Default 114

aitRNAscan-SE version 1.23.

bTested on an AMD Athlon, 1.6 GHz, 1024 Mb RAM with Linux.

‘ARAGORN run with a maximum intron size of 100 nucleotides and the —t switch (tRNA detection only)
The intron size roughly corresponds to the default used by tRNAscan-SE.

28



RNAMmer
rRNA Tool

Ab Initio based tool

It uses Hidden Markov

Models trained on data from 5s
rRNA database.

fast with little loss

of sensitivity, enabling the
analysis of a complete bacterial
genome in less than a minute.

the location of rRNAs
can be predicted with a very
high level of accuracy.

OPEN @ ACCESS Freely avallable online @PLOS | ONE

Comprehensive Genomic Characterization of
Campylobacter Genus Reveals Some Underlying
Mechanisms for its Genomic Diversification

Yizhuang Zhou', Lijing Bu?, Min Guo', Chengran Zhou®, Yongdong Wang®*, Liyu Chen®*, Jie Liu®*

1 BGl-Shenzhen, Shenzhen, Guangdong Province, China, 2 Blolegy Department of University of New Mexico, Albuquerque, Mew Mexico, United States of America,
3 Department of Blology, Sichuan University, Chengdu, Sichuan Province, China, 8 Key Discipline Laboratory for Mational Defense for Blotechnology in Uranlum Mining
and Hydrometallurgy, University of Seuth China, Hengyang, Hunan Pravince, China, 5 Departrment of Microbdology, Xiangya School of Medidne, Central South University,
Changsha, Hunan Provinee, China, 6 Translational Center for Ster Cell Research, Tangjl Hospital, Stem Cell Research Center, Tong)l Unlversity School of Medidne,
Shanghal, China
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Infernal
NncRNA Tool

an implementation
of covariance models (CMs)

RNA homology search

based on accelerated profile
hidden Markov model (HMM)
methods and HMM-banded

CM alignment methods

100-fold faster

RNA homology searches and
~10 000-fold acceleration
over exhaustive non-
filtered CM searches.

Rfam: an RNA family database

Sam Griffiths-Jones*, Alex Bateman, Mhairi Marshi

The Wellcome Trust Sanger Institute, Wellcome Trust Genome Ca
'Howard Hughes Medical Institute and Department of Genetics, W

St Louis, MO 63110, USA

Received August 15, 2002; Accepted September 1, 2002

ABSTRACT

Rfam is a collection of multiple sequence alignments
and covariance models representing non-coding
RNA families. Rfam is available on the web in the
UK at http://www.sanger.ac.uk/Software/Rfam/ and
in the US at http://rfam.wustl.edu/. These websites
allow the user to search a query sequence against a
library of covariance models, and view multiple
sequence alignments and family annotation. The

database can also be downloaded in flatfile form and
searched locally using the INFERNAL package
(http://finfernal.wustl.edu/). The first release of Rfam
(1.0) contains 25 families, which annotate over 50 000
non-coding RNA genes in the taxonomic divisions of

the EMBL nucleotide database.
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Next Steps

Test out best tools for Homology method

Perform Ab-initio tool evaluation and merge the
results with non-coding RNA prediction results

Validate using the selected homology-based
method

Output data in GFF format for the Functional
Annotation group
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Bt QUESTIONS?




