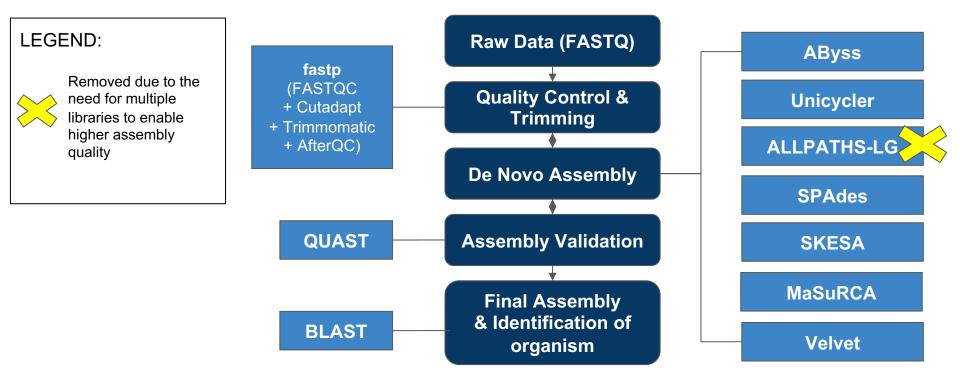
Genome Assembly Final Results

Team 1 Genome Assembly

Lawrence McKinney, Laura Mora, Jessica Mulligan, Heather Patrick, Devishi Kesar and Cecilia (Hyeonjeong) Cheon



February 18, 2020

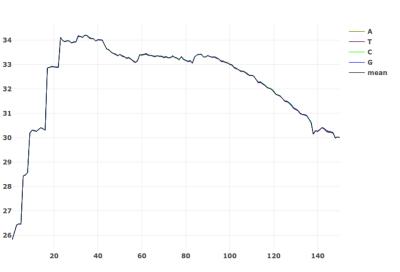
Outline

- Approach Overview
- Reads Pre-processing Fastp
- Assembler Evaluation Criteria
- Evaluation Results
- Identification of Pathogen
- Revised Pipeline
- References

Approach Overview

Reads preprocessing - Fastp

- Used for quality control analysis as well as read trimming.
- fastp: includes most features of FASTQC + Cutadapt + Trimmomatic + AfterQC while running 2–5 times faster than any of them alone.
- After experiment with different parameter values for
 - Sliding window : 4, 5, 8, 10, 12
 - Minimum quality threshold for cutting [cut low quality bases for per read in its 5' and 3' by evaluating the mean quality from a sliding window] : 18, 20, 22, 25, 28
- Chosen sliding window : 10
- Chosen minimum quality threshold : 22


Using fastp with SW 8, MQ 28

SW: Sliding Window MQ: Minimum Quality Threshold

quality

Fig.3: Summary Quality Table Before and After Filtering

SW 8 too low; MQ 28 too high

position

Before filtering

total reads:	1.165192 M
total bases:	291.298000 M
Q20 bases:	263.803236 M (90.561293%)
Q30 bases:	243.422655 M (83.564822%)
GC content:	50.555203%

After filtering

total reads:	1.165192 M
total bases:	287.736400 M
Q20 bases:	262.268990 M (91.149048%)
Q30 bases:	242.273384 M (84.199769%)
GC content:	50.557496%

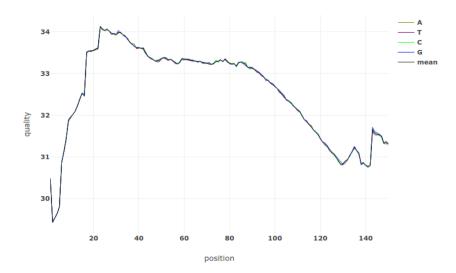
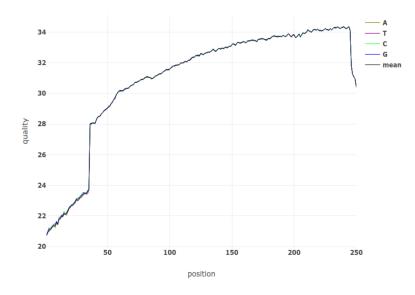



Fig.1: Before Filtering: read 2 quality

Using fastp with SW 10, MQ 20

SW: Sliding Window MQ: Minimum Quality Threshold

SW 10 good; MQ 20 not good

Before filtering

Fig. 3: Summary Quality Table Before and After Filtering

 total reads:
 1.597948 M

 total bases:
 239.692200 M

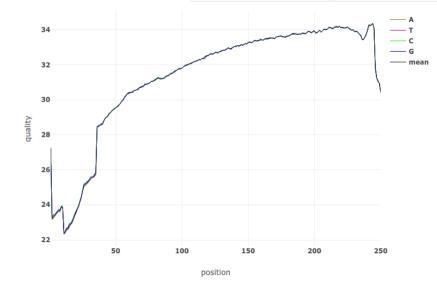
 Q20 bases:
 226.920460 M (94.671608%)

 Q30 bases:
 210.268582 M (87.724416%)

 GC content:
 50.558582%

After filtering

total reads:	1.597948 M
total bases:	232.458974 M
Q20 bases:	220.892243 M (95.024184%)
Q30 bases:	206.983619 M (89.040924%)
GC content:	50.559314%



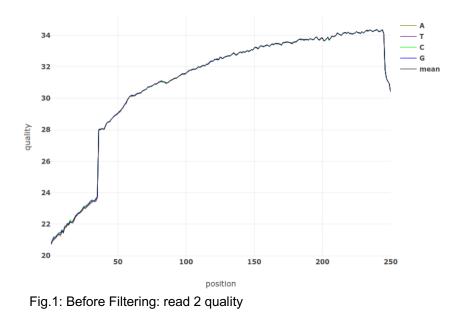

Fig.1: Before Filtering: read 2 quality

Fig. 2: After Filtering: read 2 quality

Using fastp with SW 10, MQ 22

SW: Sliding Window MQ: Minimum Quality Threshold

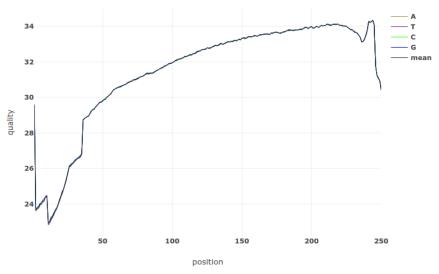
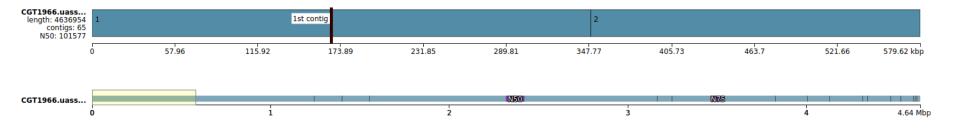
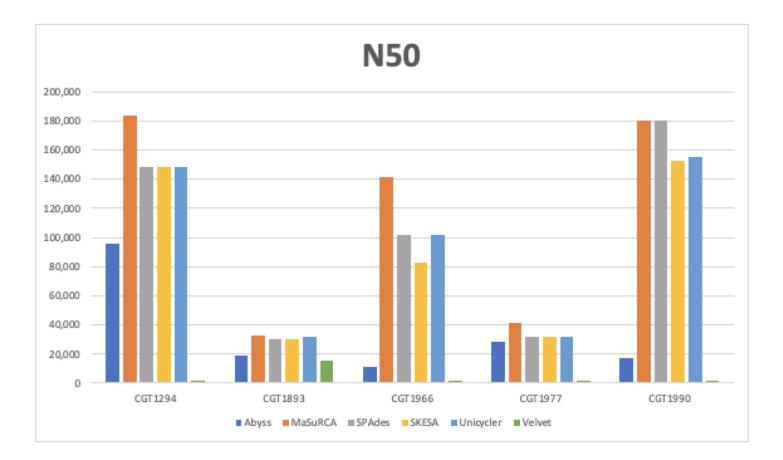
SW 10 good; MQ 22 good

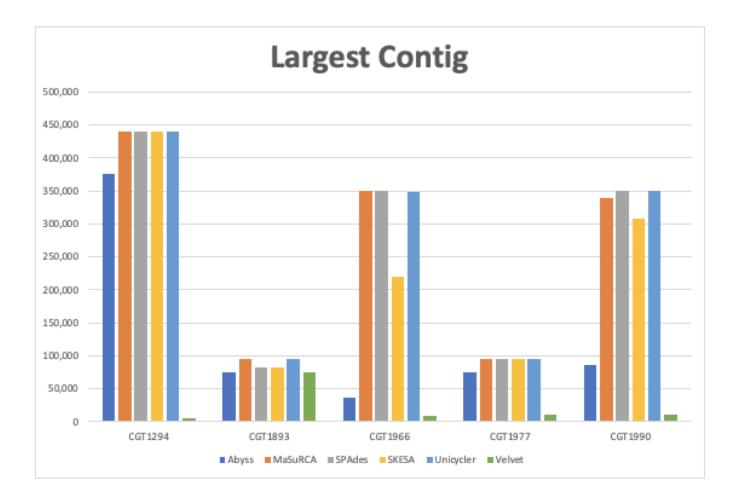
Before filtering

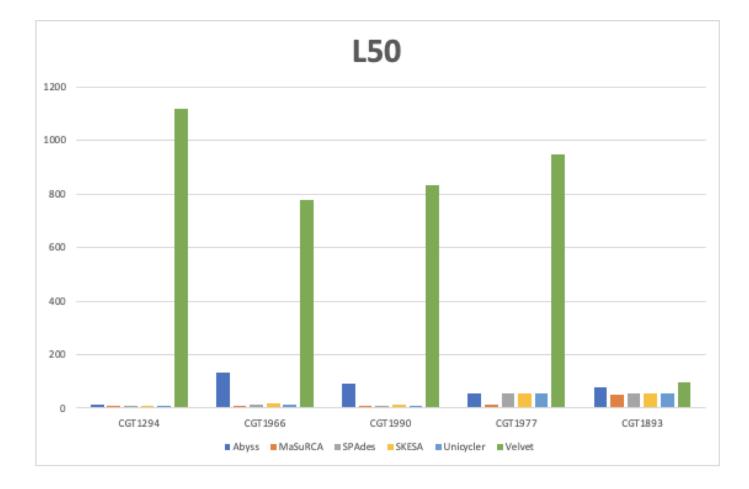
Fig. 3: Summary Quality Table Before and After Filtering	total reads:	1.165192 M
	total bases:	291.298000 M
	Q20 bases:	263.803236 M (90.561293%)
	Q30 bases:	243.422655 M (83.564822%)
	GC content:	50.555203%

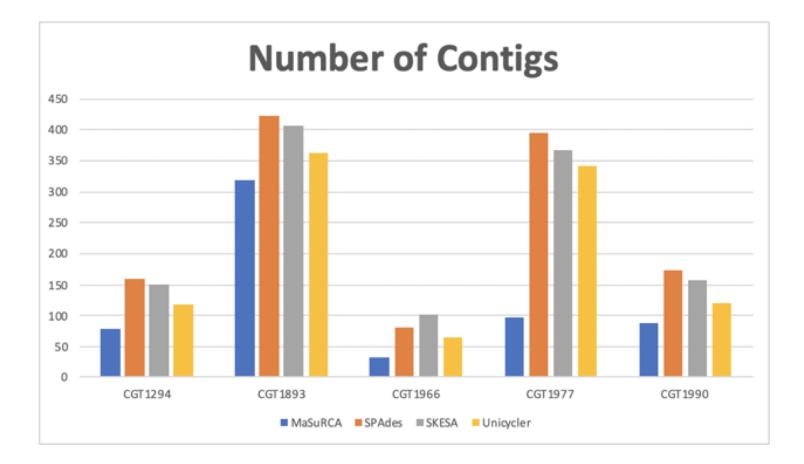
After filtering

5	
total reads:	1.165192 M
total bases:	285.290653 M
Q20 bases:	260.933421 M (91.462310%)
Q30 bases:	241.223586 M (84.553624%)
GC content:	50.558570%

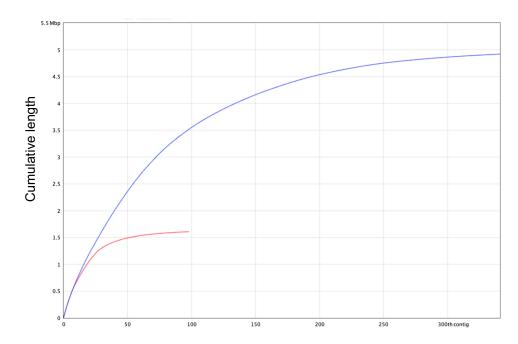





Fig. 2: After Filtering: read 2 quality


Genome Assembler Evaluation Criteria (QUAST)


Metric	Description
N50	The minimum contig length crossing the 50% threshold of the total assembled size of the genome.
L50	An assembly is considered to have continuity if it's N90 > 5kb
Assembly Size	The total number of bases in the assembly
Contig statistics	Contigs may be joined into scaffolds or remain unscaffolded. This metric indicates how much of the assembly is represented by scaffolded contigs.





MaSuRCa and Unicycler comparison

Went Medien		Show heatma	ар
Worst Median	Best		
Statistics without r	eference	■ MaSuRCA	Unicycler
# contigs		98	341
# contigs (>= 0 bp)		98	341
# contigs (>= 1000	bp)	94	341
# contigs (>= 5000	bp)	50	212
# contigs (>= 10000) bp)	37	145
# contigs (>= 25000) bp)	26	72
# contigs (>= 50000) bp)	8	15
Largest contig		95 100	94 989
Total length		1 608 937	4918958
Total length (>= 0 b	p)	1 608 937	4918958
Total length (>= 100	00 bp)	1 605 848	4918958
Total length (>= 5000 bp)		1 492 690	4 598 663
Total length (>= 10000 bp		1 395 498	4 113 840
Total length (>= 25000 bp		1 232 255	2 995 458
Total length (>= 500	000 bp)	576 292	958 822
N50		41 488	31980
N75		26 681	14 129
L50		14	54
L75		26	109
GC (%)		51.36	51.01
Mismatches			
# N's		0	0
# N's per 100 kbp		0	0

Final pipeline

- Given the dataset of 50 paired end isolates, our script performs:
 - Quality control and trimming using fastp
 - Genome assembly using Unicycler and MaSuRCa
 - Evaluation of metrics using QUAST
 - Final output on the basis of the ranking into the output folder.

Genome Assembly Pipeline

This pipeline is designed to automate the assembly of a genome with the option to perform quality control prior to assembly and allows the user to pick between the MaSuRCa or Unicycler assemblers or the auto option, which will decide choose the assembler for the user based on quality metrics given by Quast.

- Team 1 Genome Assembly
- Software Requirements
- Usage
- References

Team 1- Genome Assembly

The Genome Assembly group members for Team 1 are:

Cecilia (Hyeonjeong) Cheon

- Devishi Kesar
- Laura Mora
- Lawrence McKinney
- Jessica Mulligan
- Heather Patrick

Software Requirements

1. fastp (if performing read quality assessment and trimming)

2. MaSuRCa (if choosing MaSuRCa or the auto option for performing genome assembly)

3. Unicycler (if choosing Unicycler or the auto option for performing genome assembly)

4. Quast (tool for quality control metrics)

Usage

Update the paths of the tools downloaded from Software Requirements in the config.txt file prior to running the genome assembly pipeline.

```
./run_genome_assembly_pipeline.sh [-t <int>] -p <dir_path> -o <dir_name> [-q] -g <m|u|a> [-v] [-h]
```

```
    -p path to directory containing gzipped fastq forward and backward reads
```

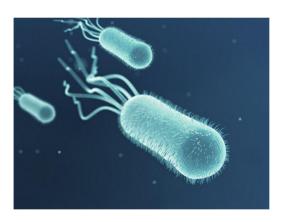
```
-o path to output directory
```

```
-q perform quality control and trimming using fastp
```

```
-g assembler of choice; can pick between MaSuRCa (m), Unicycler (u), or auto (a) (for auto, pipelin
```

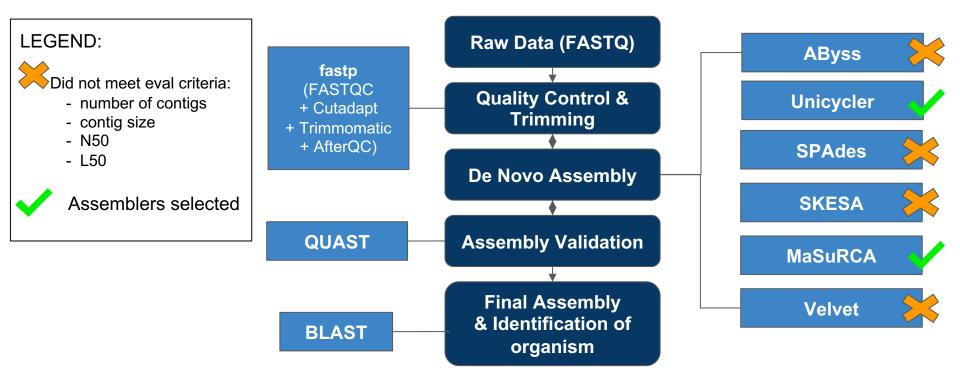
-v activate verbose mode

h print usage information


The auto option will pick MaSuRCa as the assembler of choice unless the length is more than 10% shorter than Unicycler.

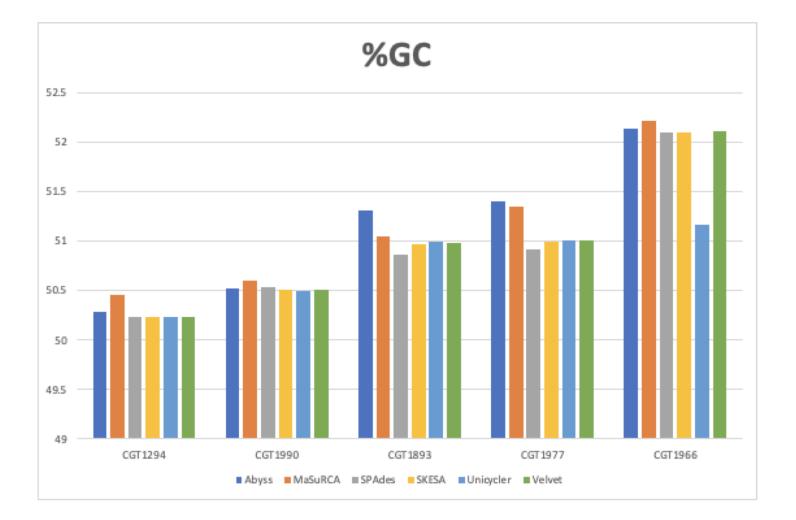
References

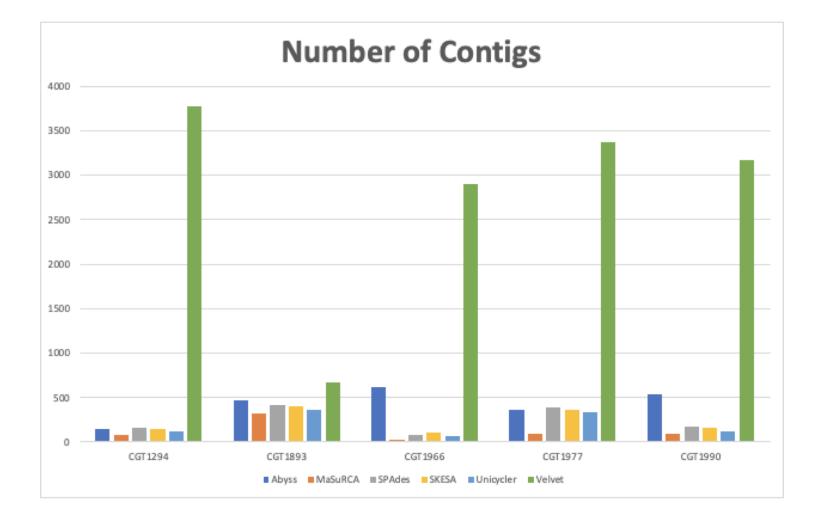
- Shifu Chen, Yanqing Zhou, Yaru Chen, Jia Gu; fastp: an ultra-fast all-in-one FASTQ preprocessor, Bioinformatics, Volume 34, Issue 17, 1 September 2018, Pages i884–i890, https://doi.org/10.1093/bioinformatics/bty560
- Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The MaSuRCA genome assembler. Bioinformatics. 2013 Nov 1;29(21):2669-77.
- Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13(6): e1005595. https://doi.org/10.1371/journal.pcbi.100559


Identification of pathogen

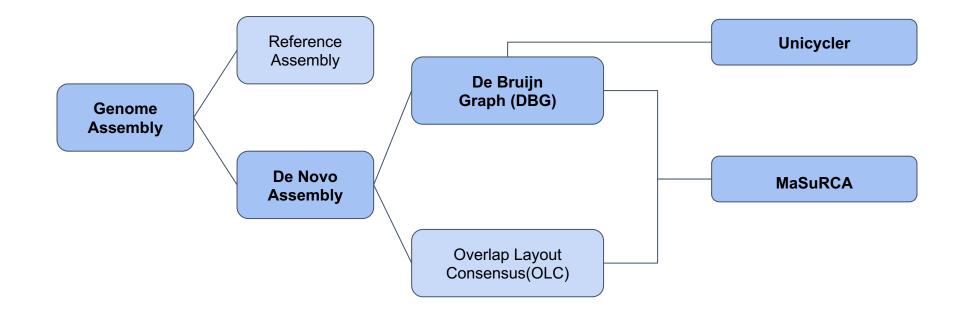
The identified pathogen for the 50 isolates is *Escherichia coli*.

BLAST [®] » blas	tn suite » results for RID-4P9XZJSY014	Home Recent Results Saved Strategies Help		
< Edit Search	Save Search Search Summary 💙	How to read this report? BLAST Help Videos DBack to Traditional Results Pag		
Job Title	ctg718000002909	Filter Results		
RID	4P9XZJSY014 Search expires on 02-19 06:54 am Download All			
Program	BLASTN 😧 Citation 🗸 Organism only top 20 will appear			
atabase	nt See details V Type common name, binomial, taxid or group name			
uery ID	lcl Query_33663	+ Add organism		
escription	None	Percent Identity E value Query Coverage		
lolecule type	dna			
uery Length	95000			
Other reports	Distance tree of results MSA viewer 🔞	Filter Reset		
Descriptions Sequences	Graphic Summary Alignments Taxonomy producing significant alignments	Download V Manage Columns V Show 100 V		
🗹 select all	100 sequences selected	GenBank Graphics Distance tree of results		
	Description	Max Total Query E Per. Score Score Cover value Ident Accession		
Escherich	ia coli strain PSUO103. complete genome	1.752e+05 1.788e+05 100% 0.0 99.96% CP014752.1		
	la coli strain 2013C-4404 chromosome, complete genome	1.725e+05 1.764e+05 100% 0.0 99.44% CP027376.1		
-				
	Escherichia coli isolate EC-TO75 genome assembly. chromosome: 1 1.719e+05 1.758e+05 100% 0.0 99.33% LS998785.			
	scherichia coli isolate E. coli RL465 genome assembly. chromosome: RL465 chromosome 1.719e+05 1.758e+05 100% 0.0 99.33% LT594504.1			
	la coli strain PT109 chromosome_complete genome 1.719e+05 1.758e+05 100% 0.0 99.33% CP041031.1			
_	a coll 042 chromosome.complete.genome 1.719e+05 1.758e+05 100% 0.0 99.33% CP042834.2			
Escherich	ia coli strain AR24.2b chromosome, complete genome 1.719e+05 1.758e+05 100% 0.0 99.33% CP0359			

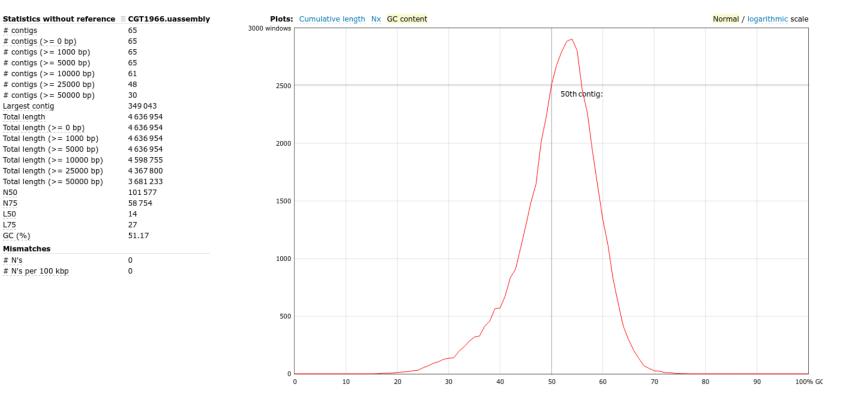

Final workflow



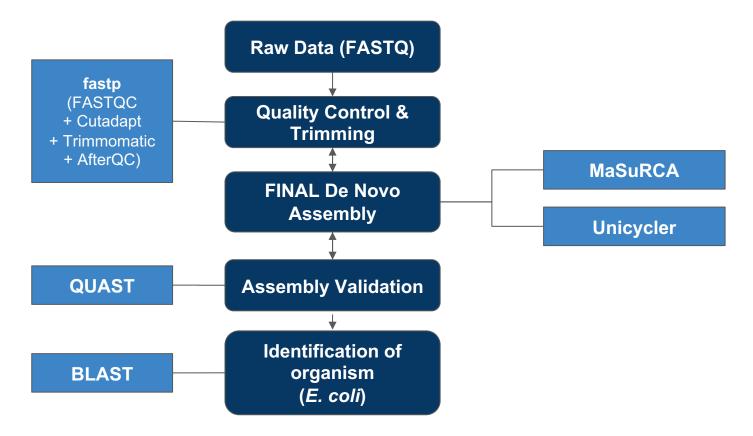
References


- 1. Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, Glenn Tesler, QUAST: quality assessment tool for genome assemblies, Bioinformatics, Volume 29, Issue 8, 15 April 2013, Pages 1072–1075, https://doi.org/10.1093/bioinformatics/btt086
- 2. Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J Comput Biol*. 2012;19(5):455–477. doi:10.1089/cmb.2012.0021
- 3. Butler, Jonathan et al. "ALLPATHS: de novo assembly of whole-genome shotgun microreads." Genome research vol. 18,5 (2008): 810-20. doi:10.1101/gr.7337908
- 4. <u>Earl, Dent et al.</u> "Assemblathon 1: a competitive assessment of de novo short read assembly methods." *Genome research* vol. 21,12 (2011): 2224-41. doi:10.1101/gr.126599.111
- 5. <u>Maccallum, lain et al.</u> "ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads." *Genome biology* vol. 10,10 (2009): R103. doi:10.1186/gb-2009-10-10-r103
- 6. Miller, Jason R et al. "Assembly algorithms for next-generation sequencing data." Genomics vol. 95,6 (2010): 315-27. doi:10.1016/j.ygeno.2010.03.001
- 7. Pritt, J., Chen, N. & Langmead, B. FORGe: prioritizing variants for graph genomes. Genome Biol 19, 220 (2018). https://doi.org/10.1186/s13059-018-1595-x
- 8. Quainoo, S., Coolen, J.P., Hijum, S.A., Huynen, M.A., Melchers, W.J., Schaik, W.V., & Wertheim, H.F. (2017). Whole-Genome Sequencing of Bacterial Pathogens: the Future of Nosocomial Outbreak Analysis. *Clinical microbiology reviews, 30 4*, 1015-1063.
- 9. Rahman, A., Pachter, L. CGAL: computing genome assembly likelihoods. *Genome Biol* 14, R8 (2013). https://doi.org/10.1186/gb-2013-14-1-r8
- 10. <u>Salzberg, Steven L et al.</u> "GAGE: A critical evaluation of genome assemblies and assembly algorithms." *Genome research* vol. 22,3 (2012): 557-67. doi:10.1101/gr.131383.111
- 11. Shifu Chen, Yanqing Zhou, Yaru Chen, Jia Gu; fastp: an ultra-fast all-in-one FASTQ preprocessor, Bioinformatics, Volume 34, Issue 17, 1 September 2018, Pages i884– i890, https://doi.org/10.1093/bioinformatics/bty560
- 12. Sohn, Jang-il; Nam, Jin-Wu. "The present and future of de novo whole-genome assembly", Briefings in Bioinformatics, Vol 19.1 (2018). doi.org/10.1093/bib/bbw096
- 13. Souvorov A., Agarwala R., & Lipman D.J. SKESA: strategic k-mer extension for scrupulous assemblies. Genome Biology. 2018; 19(1). doi:10.1186/s13059-018-1540-z
- 14. Tanja Magoc, Stephan Pabinger, Stefan Canzar, Xinyue Liu, Qi Su, Daniela Puiu, Luke J. Tallon, Steven L. Salzberg, GAGE-B: an evaluation of genome assemblers for bacterial organisms, Bioinformatics, Volume 29, Issue 14, 15 July 2013, Pages 1718–1725, https://doi.org/10.1093/bioinformatics/btt273
- 15. Zerbino, D., & Birney, E. (n.d.). Velvet: de novo assembly using very short reads. Hinxton: European Bioinformatics Institute.

Supplementary slides



Final Pipeline



Quality Control Analysis: GC content

Contigs are broken into nonoverlapping 100 bp windows. Plot shows number of windows for each GC percentage.

Final Pipeline

Assemblers Eliminated

Assemblers	Elimination Criteria
ALLPATHS-LG	Inappropriate input data
Velvet	Did not meet our evaluation criteria
AbySS	Did not meet our evaluation criteria
Skesa	Underperformed compared to Unicycler and MaSurCa