Team 1: Gene Prediction Background & Strategy

Aaron Pfennig, Priya Narayanan, Jessica Mulligan, Hira Anis, Winnie Zheng, Maria Ahmad

Prokaryotic gene structure

Gene Prediction Introduction

Gene prediction or gene finding is a process or identifying the regions of genomic DNA that encodes genes

Two classes of genes:

- Coding genes \rightarrow proteins
- Non-coding genes \rightarrow tRNAs, rRNAs etc.

It adopts two classes of methods:

- Similarity based (homology) searches
- *ab initio* prediction
 - Markov & Hidden Markov Model

Plans to assess the performance of the tools

It is possible to compute sensitivity, positive predictive value and specificity (only for start site) predictions based on annotations

Sn = TP / (TP + FN)

PPV = TP / (TP + FP)

Sp = TN / (TN + FP) (only start site prediction)

-Sn=Sensitivity

-Sp=Specificity

-TP=True Positive ; TN=True Negative

-FP= False Positive ; FN=False Negative

-PPV= Positive Predictive Value

[2] Wang et al (2004).

Ab-initio approaches (CDS prediction)

Aims at predicting protein coding genes in a given genome based on certain features:

- ORFs
- GC content \rightarrow codon usage bias
- regulatory motifs (SD, RBS etc.)

Highly popular methods rely on HMMs:

- GeneMarkS2
- Glimmer3

Another approach uses dynamic programming:

• Prodigal

Ab-initio approaches (CDS prediction)

GeneMarkS2:

- Self-training algorithm based on a HMM
- Models transcription domain to predict gene start more accurately
- incl. heuristic model designed to predict horizontally transferred genes

Glimmer3:

- Interpolated Markov Model
- Reverse scoring → scoring relies on k-mer within coding region
- Trains on long ORFs

Prodigal:

- Identifies all ORFs and scores them using a dynamic programming approach
- Refines predictions after training on subset of ORFs

Ab-initio approaches (CDS prediction)

GeneMarkS2:

- Highest sensitivity and specificity
- Works on diff. gene regulatory motifs G
 - Leadered (Shine-Dalgarno +/-)
 - o Leaderless

Glimmer3:

- Under performs by most metrics
- Predicts the least short genes (<150 nt)

Prodigal:

- Trained on E.coli
- Predicts the most gene starts correctly in *E.coli*

A	Bins (nt)	<150	150-300	300-600	600–900	>900	Total	
Algorithm	COG genes	362	13,985	65,948	83,745	177,446	341,486	
		Missed annotated genes (FN)						
GeneMarkS Glimmer3		136 66	494 678	434 1170	192 341	296 323	1552 2578	
Prodigai GeneMarkS-2		161 132	639 596	417 370	⁹² 76	78 69	1387 1243	
В	Bins (nt)	<150	150–300	300-600	600–900	>900	Total	
Algorithm		False positives (FP) in simulated sequence						
GeneMarkS Glimmer3 Prodigal		3366 17,446 4525	5113 5044 5321	1230 1299 1453	177 228 419	94 136 135	9980 24,153 11 853	
GeneMarkS-2		792	1541	601	137	77	3148	

Panel A: Counts of genes missed by a particular tool (false negatives) among 341,486 COG genes annotated in 145 genomes. The counts are given in five length bins. Panel B: Counts of false positive predictions made in 144 simulated genomic sequences made from 144 original genomes where annotated intergenic regions were replaced by artificial noncoding sequence (see text). The numbers of false predictions were sorted by length in the same way as in Panel A. Bold font designates the minimal number of observed errors in each column (for each panel separately).

Table 4. Numbers of correctly predicted gene starts verified by N-terminal protein sequencing

Species	Gene-start model type	# of verified gene starts	GeneMarkS	Glimmer3	Prodigal	GeneMarkS-
A. pernix ^a	А	130	125	119	127	126
D. deserti	С	384	315	314	334	369
E. coli	А	769	725	714	751	740
H. salinarum ^a	D	530	502	454	514	523
M. tuberculosis	С	701	572	572	620	635
N. pharaonis ^a	D	315	309	288	309	312
Svnechocvstis	x	96	81	79	92	92
, , , , , , , , , , , , , , , , , , , ,	Total	2925	2629	2540	2747	2797

Bold font designates the maximum number of correct start predictions for each species as well as in total. ⁴Archaea.

Homology based approaches

Compare sequence with known genes

Relies on extrinsic information (eg. known expressed sequence tags, messenger RNA, protein products, and homologous or orthologous sequences)

Important to consider *horizontal gene transfer* in prokaryotes, and to find tools which consider this

Homology based approaches

• BLASTX

- Translated nucleotide \rightarrow protein
- Produces more reliable and accurate results than BLASTn & BLASTp when dealing with coding DNA

DIAMOND

- Protein alignment algorithm which uses double indexing
- Intended for replacing BLASTx in high-throughput setting
- Aligns short sequence reads 20k X faster than BLASTx, with similar level of sensitivity

• HMMER

- o HMM
- Designed to detect remote homologs as sensitively as possible \rightarrow horizontal gene transfer
- o As fast as BLAST

Non coding gene prediction (tRNA)

tRNAs play an important role in cellular transcription by being able to recognize codons within mRNA and attaching the corresponding amino acids to amino acid chains

They also have regulatory and synthesis functions outside of translation

tRNAscan-SE

- Uses covariance model
- Must exceed similarity threshold + potential to form T-loop

Aragorn

- Predicts tRNA and tmRNA genes
- Attempts to find subset of the B box (GTTC)
- Expands around hits in order to find characteristic motifs

Non coding gene prediction (tRNA)

- ARAGORN vs tRNAscan-SE
 - o ARAGORN is much faster and as sensitive

Test set	No. of tRNAs	No. of	tRNAs detected	Detection rate (%)		
		ARAGORN	tRNAscan-SE	ARAGORN	tRNAscan-SE	
Archaea	161	161	160	100	99.4	
Bacteria	686	684	682	99.7	99.4	
Eukaryota	443	435	437	98.2	98.6	
Combined	1290	1280	1279	99.2	99.1	

Lineage	Genome	No. of	tRNAs detected	Search time (s) ^b		
		ARAGORN ^C	tRNAscan-SE ^d	ARAGORN ^C	tRNAscan-SE ^d	
Archaea	M.jannaschii	37	37	1.4	With -A 24	
Bacteria	E.coli O157:H7	104	103	5.2	With -B 112	
Eukaryota	S.cerevisiae	274	275	11	Default 114	

Non coding gene prediction

(rRNA)

rRNAs are highly conserved due to their role in protein synthesis

RNAmmer

- Predicts rRNA genes
- HMM from structural alignment
- Allows variation in rRNA genes

barrnap

- Uses a HMM for each rRNA gene
- Built from full length seed alignments

Non coding gene prediction (rRNA)

- RNAmmer vs barrnap
 - RNAmmer is more sophisticated and accurate
 - Uses HMMer 2.x in 'glocal' alignment mode
 - barrnap uses nHMMer in local alignment mode
 - barrnap is available without license

Lagasen et. al. (2007). Torsten Seemann. (2018)

Workflow

Reference

[1] Prokaryotic Gene Structure. Wikipedia. https://en.wikipedia.org/wiki/Template:Prokaryote_gene_structure

[2] Wang, Z., Chen, Y., & Li, Y. (2004). A brief review of computational gene prediction methods. *Genomics, proteomics & bioinformatics*, 2(4), 216–221. doi:10.1016/s1672-0229(04)02028-5

[3] Toledo, Tomer & Katz, Romina. (2009). State Dependence in Lane-Changing Models. Transportation Research Record. 2124. 81-88. 10.3141/2124-08.

[4] Lomsadze Alexandre. et al. (2017) Improved prokaryotic gene prediction yields insights into transcription and translation mechanisms on whole genome scale. 1–24. doi: 10.1101/193490.

[5] Lomsadze, Alexandre et al. (2017) "GeneMarkS-2 : Raising Standards of Accuracy in Gene Recognition." .

[6] A.L. Delcher, K.A. Bratke, E.C. Powers, and S.L. Salzberg. Identifying bacterial genes and endosymbiont DNA with Glimmer, Bioinformatics 23:6 (2007), 673-679.
[7] Hyatt, D., Chen, G. L., Locascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC bioinformatics*, *11*, 119. doi:10.1186/1471-2105-11-119

[8] Gene Prediction. Wikipedia. 2019. https://en.wikipedia.org/wiki/Gene_prediction

[9] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) "Basic local alignment search tool." J. Mol. Biol. 215:403-410. <u>PubMed</u>
[10] Benjamin Buchfink, Chao Xie & Daniel H. Huson, Fast and Sensitive Protein Alignment using DIAMOND, Nature Methods, 12, 59–60 (2015)
doi:10.1038/nmeth.3176.

[11] HMMER: biosequence analysis using profile hidden Markov models. <u>http://hmmer.org/</u>

[12] Lowe, T. M., & Eddy, S. R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic acids research*, 25(5), 955–964. doi:10.1093/nar/25.5.955

[13] Laslett, D., & Canback, B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. *Nucleic acids research*, 32(1), 11–16. doi:10.1093/nar/gkh152

[14] Transfer RNA. Wikipedia. (2020).

[15] Lagesen, K., Hallin, P., Rødland, E. A., Staerfeldt, H. H., Rognes, T., & Ussery, D. W. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. *Nucleic acids research*, *35*(9), 3100–3108. doi:10.1093/nar/gkm160

[16] Torsten Seemann. (2018). BAsic Rapid Ribosomal RNA Predictor. <u>https://github.com/tseemann/barrnap</u>

[17] Kate. M. (2017). How do mRNA, tRNA work together in translation to build protein? *Socratic Q&A*. <u>https://socratic.org/questions/how-do-mrna-trna-and-rrna-work-together-in-translation-to-build-protein</u>