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Pedagogical note on algorithms |[i]

* This class is practical with an emphasis on
e Formulation of a biological problem in terms of bioinformatics approaches/tools

 Evaluation of the best (set) application(s) / tool(s) / program(s) for any given problem
* Deployment and execution of those tools to address the problem and do the job

* Not an algorithms course per se

* Useful to understand the algorithmic foundations of the various
* Can inform choice of best applications/tools
* Can inform parameter choice decisions
e Can help to monitor behavior and trouble shooting of applications



Pedagogical note on algorithms |[ii]

* Ongoing overview of foundational algorithms in bioinformatics

* Previously (genome assembly)
» Sequence substrings (k-mers)
* Graph based approaches

» Today (gene prediction)
» Sequence substring (k-mer) indexing
* Dynamic programming (alignment)
e Hidden Markov Models (HMM)
* Dynamic programming (Viterbi algorithm)



Approaches to gene prediction

* Homology-based methods
* Find genes via comparison with sequences of know genes
e Extrinsic information
* Reliable for what we already know
 Limited by what we already know (no new knowledge)
» Can use to validate/support ab initio
* Ab initio methods
* Find genes based on intrinsic characteristics of genome sequence

Prior knowledge = differences in sequence composition between protein coding and non-coding
sequences

Not quite as robust as homology-based methods
Opportunity for new knowledge



Homology-based gene prediction with BLAST

* Homology-based methods

* Find genes via comparison with sequences of know genes

* Extrinsic information
* Reliable for what we already know

 Limited by what we already know (no new knowledge)

January 30, 2020

m/2001/2/

Tutorial
Having a BLAST with bioinformatics (and avoiding BLASTphemy)
Alexander Pertsemlidis and John W Fondon III

Addre
TX 75

cDermott Center for F

srowth and Development, University of Texas Southwestern Medical Center, Dallas,

C de Alexander

Published: 27 September 2001
Genome Biology 2001, 2(10):reviews2002.1-2002.10

The electronic version of this article is the complete one and can be
found online at 2001 2002

© BioMed Central Ltd (Print ISSN 1465-6906; Online ISSN 1465-6914)

Abstract

Searching for similarities between biological sequences is the principal means by which bioinformatics
contributes to our understanding of biology. Of the various informatics tools developed to accomplish
this task, the most widely used is BLAST, the basic local alignment search tool. This article discusses
the principles, workings, applications and potential pitfalls of BLAST, focusing on the implementation
developed at the National Center for Biotechnology Information.
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Ab initio gene prediction

* Ab initio methods
* Find genes based on intrinsic characteristics of genome sequence

* Prior knowledge = differences in sequence composition between protein coding and non-coding
sequences

* Not quite as robust as homology based methods
e Opportunity for new knowledge



Models and Definitions

* Markov model
* Stochastic model of a randomly changing system
» Future state depends only on the current state (not previous states)
e Critical assumption that facilitates computation (tractable algorithms)

* Hidden Markov Model (HMM)

* Markov model of a randomly changing system

e System is made up of unobserved (hidden) states
* Coding versus non-coding sequences

* Hidden states ‘emit’ observed states
* Observed sequence of DNA residues



HMMs and Machine Learning

* Machine learning algorithms are presented with training data to derive insight
about unknown (hidden) parameters in the data
* More training data generally yields more accurate parameter inferences
* Parameters = biological knowledge

* Once an algorithm is trained, it can apply these insights to the analysis of test data
 Test data should be different from training data
* Apply biological knowledge (parameters) with algorithm to new (test) data



Biology of HMMs for gene prediction

* Ab initio gene prediction relies on the use of intrinsic features of genome to find
genes (features) in sequence
e Distinguish protein coding (gene) regions from non-coding regions

* Biological insights underlying these intrinsic features
* Protein coding sequences (genes) are relatively long sequences interrupted by shorter intergenic
regions dispersed along the genome
* HMM transition probabilities

* Protein coding sequences have distinct sequence compositions compared to non-coding
sequences
* Owing to the degeneracy of the genetic code
* HMM emission probabilities
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Genome sequence composition: coding vs. non-coding

e Sequence composition (% GC content) differs across different organisms (species)

* % GC content differs between protein coding (higher) and non-coding (lower)
regions

* % GC content differs among different positions of codons
» Based on composition (availability) of tRNAs

Codon usage database
http://www.kazusa.or.jp/codon/



Genetic code
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Third letter

Code is redundant

Synonymous codons =
different codons (RNA
triplets) encoding the
same amino acid

Constraints on overall
and codon position-
specific %GC content
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Codon usage

* Synonymous codons are used at different frequencies in different organisms

(species)

* Based on availability (abundance) of specific tRNAs

E. coli Leucine

UUA
UuG
Cuu
CUC
CUA
CUG

13.8%
13.0%
11.4%
10.5%
3.9%

51.1%

B. subtilis Leucine

UUA
UuG
Cuu
CUC
CUA
CUG

19.8%
15.8%
21.8%
10.7%

4.9%
23.0%

Codon usage database
http://www.kazusa.or.jp/codon/



Genome sequence composition: coding vs. non-coding
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Genome sequence composition: coding vs. non-coding
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Genome region GC content

0.8
Aeropyriom pernix
Pyrococeus horikoshii AMrm(mop.\ :u kandleri
. O
Pyrococcus furiosgsyobaculion aerophilun 6
o Sulfolobus solfataricus & & J /
0.7 Sulfolobus tokodaii Aquifex geolicus Archacoflobus fulgidus - 2 O
Methanococcus jannaschii 4 Th dEhermophilius HB27
A © Thermotoga maritima ° &0 A
A
0.6 T
=0
05 +
0.4 + P
O
03 + O protein-coding regions
< non-coding regions
4 tRNA genes
OrRNA genes
0.2 t t t y 1
0.2 0.3 04 0.5 0.6 0.7

Complete genome GC content

0.8

GC coding > GC non-coding

Zhu et al. (2010) Nucleic Acids Res. 38: €132

15



Genome sequence composition: codon positions
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HMMs for bacterial gene prediction (finding)

* Gene finding = distinguish protein coding from non-coding regions
in @ DNA sequence

AN INTRODUCTION TO

1. Formulate the problem of gene finding in the context of HMMs e e
(evaluation) N

2. Use biological knowledge to parameterize (train) HMMs
(learning)

3. Use dynamic programming (Viterbi) algorithm to solve problem
(decoding) Ch11 ppg. 390-397

Januar y 30, 2020 17



HMM as a symbol emitting ‘machine’

* HMM is machine that produces output — discrete sequence of symbols

e At each step, machine is in one of khidden states

* At each step, machine decides:

1. What state will | move to next
* Choose from among khidden states

2. What symbol will emit from that state
* Choose from an alphabet 2 of symbols



HMM as a symbol (DNA) emitting ‘machine’

%TGCAATGCATTACGTGCATATGA}CGATTCGGCATC

Emission

Hidden State

Non-coding (N)
o
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HMM formal definition

* > is an alphabet of symbols; 2 ={A, T, C, G}
* Qis a set of hidden states; 0 = {Coding (C), Non-coding (N)}

* A=(a,) is a matrix describing the probability of changing to state /after the HMM
is in state & (learned from data)

* F'= (e b)) is a matrix describing the probability of emitting the symbol bwhen the
HMM is in state & (learned from data)



Hidden state transition matrix 4 - (a;)

aaaaaaa 30, 2020

Coding (C)) Non-coding (NC))
Coding (C,) 0.9 0.1
Non-coding (NC,) 0.3 0.7




Hidden state emission matrix £ - (e b))

aaaaaaa 30, 2020

Coding (C,) Non-coding (NC,)
0.2 0.25
0.2 0.25
0.3 0.25
0.3 0.25

22



HMM for coding vs. non-coding sequence
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Probability of a path through the HMM given the
observed states (evaluating)

4 G C A C T A T G G C\

X
T Cd ¢d C€d C€d Nc Nc Nc Ccd cd cd
P(x)|m) 0.3 03 0.2 03 025 025 025 03 0.3 0.3

P(7Z,-_1—)7Z,-)\0.8 0.9 0.9 09 0.1 0.7 0.7 03 09 0.9 Y

=[I{=1 P(mi—q = m)P(x;|m;)
- (0.8%0.3) (0.9%0.3) (0.9%0.2) (0.9%0.3) (0.1*0.25) (0.7*0.25) (0.7*0.25) (0.3*0.3) (0.9%0.3) (0.9%0.3)

Note that log values are used for mathematical simplicity

Januar y 30, 2020
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Evaluating the HMM (probability model generated
output)

L0010




Evaluating the HMM (probability model generated
output)

G C A C T

L0010




Evaluating the HMM (probability model generated
output)

G C A C T

0.3 0.3 0.2 0.3
C 29 C 22 c 22 ¢ e
0.8
s,
N N N N °

0.25

=(0.8*0.3) (0.9*0.3) (0.9*0.2) (0.9*0.3) (0.1*0.25)



Decoding the HMM (solving for best path)
but which is best path ... form 2" possible paths

G C A C T
0.3 0.3 0.2 0.3 0.2
0.9 0.9 0.9 0.9
C C C C e
0.8
e 0.3
0.1
0.2
N N N N
0.7 0.7 0.7 0.7
0.25 0.25 0.25 0.25 0.25

https://www.youtube.com/watch?v=kgSzLo9fenk
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log transformation for mathematical convenience

* We are multiplying probabilities (fractions) to get the best path
* Path that maximizes P(m| x) over all possible paths &

e This quickly leads to very small fractions and overflow

* log transformed probabilities are used to avoid this problem

e Adding log transformed values is equivalent to multiplying the same values

0.8%¥0.3=0.24 log,,(0.24) = -0.62
10g14(0.8) = -0.097 log,,(0.3) =-0.52 -0.097 + -052 = -0.62



Decoding the HMM (solving for best path)

but which is best path ... from 2" possible paths ... log transformed

G C A C T
-0.52 -0.52 -0.7 -0.52 -0.7
-0.05 -0.05 -0.05 -0.05
C C C C e
-0.10
-0.52
e -1.0
-0.70
N -0.15 N -0.15 N -0.15 N -0.15 °

-0.60 -0.60 -0.60 -0.60 -0.60

Januar y 30, 2020
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Dynamic programming with Viterbi algorithm

G C A C T
C| Cl CI Cl G
N N N N °

solve each sub-problem (left -> right), then trace best path




Dynamic programming with Viterbi algorithm

G C A C T
C| Cl CI Cl G
N N N N °

compute maximum state i scores for all possible paths fromn state i-1




Dynamic programming with Viterbi algorithm

G C A C T
-0.52
N\ N\ C
S->C
-0.10+-0.52 =-0.62
S->N
-0.70 +-0.60 =-1.30 N

_/ _/

-0.60
compute maximum state i scores for all possible paths fromn state i-1



Dynamic programming with Viterbi algorithm

G C A C T
CI Cl CI Cl G
N N N N °

compute maximum state i scores for all possible paths fromn state i-1




Dynamic programming with Viterbi algorithm

G C C->C
-0.62 +-0.05+-0.52=-1.19

N ->C
-1.30+-0.52+-0.52=-2.34

C->N
-0.62+-1.0+-0.60=-2.22

-0.60 N->N
compute maximum statei sc_1. 30 +-0.15 + -0.60 =-2.05 -1



Dynamic programming with Viterbi algorithm

.
G5

compute maximum state i scores for all possible paths fromn state i-1




Dynamic programming with Viterbi algorithm

G C A C T

compute maximum state i scores for all possible paths fromn state i-1




Dynamic programming with Viterbi algorithm

G C A C T

compute maximum state i scores for all possible paths fromn state i-1



Dynamic programming with Viterbi algorithm

oo e

compute maximum state i scores for all possible paths fromn state i-1



More realistic gene finding HMM

Direct strand

bacterial-type
coding state

archaeal-type
coding state

non-coding
state

Reverse strand

bacterial-type
coding state

archaeal-type
coding state

Zhu et al. (2010) Nucleic Acids Res. 38: €132
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Additional complexities

* Higher order Markov models — kt" order model, probability of event based on k
previous events (nucleotides)
* Previous example based on simple 15t order model

* Inhomogenous Markov models — changes probabilities based on codon position
(captures periodicity of genetic code)

* Interpolated Markov models — value of k changes depending on local nucleotide
context



Evaluating gene prediction accuracy

* Overlap measured according to 5’ (start) and 3’ (stop) site correspondence

e Start sites vary more often than stop sites (results will differ)

[ ] [ ] [

Real genes vs. Predicted genes

Januar y 30, 2020
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Evaluating gene prediction accuracy

* Sensitivity (Sn) =TP / (TP + FN)
e Specificity (Sp) = TN / (TN + FP) Classified as

False Positive True Negative

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Positive

Really is

Negative
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Additional questions?



