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Objectives

Compare and contrast functional & structural features of

isolates.
* Antibiotic Resistance profile
* Virulence profile

Differentiate outbreak vs. sporadic strains.

Characterize the virulence and antibiotic resistance functional
features of outbreak isolates.

Identify the source and spread of the outbreak.

Recommend outbreak response and treatment.



Background

Escherichia Coli

* Escherichia coli (E. coli) is a gram-negative

>/\\\< bacterium composed of numerous strains and

Plasmid serotypes.

DNA

Nucleoid
DNA

Cytoplasm

« E. coli contains plasmids (mobile genetic
elements ) which generate genome diversity by

Ribosome

Pila promoting homologous recombination,
sttty horizontal gene transfer between bacteria, and
Capsule can confer antimicrobial resistance and
virulence.

* About ~¥46% of E. coli genome is conserved
among all strains (core genome)

Flagellum

Enger, Eldon D. and Ross, Frederick C., Concepts in Biology, 10th Ed., McGraw-Hill,
2003. 4



Bacterial Strain Typing

* |dentifying bacteria at the strain level, is particularly important for
diagnosis, treatment, and epidemiological surveillance of bacterial

infections.

* Bacterial epidemiological typing generates isolate-specific genotypic
or phenotypic characters that can be used to elucidate the sources

and routes of spread of bacteria.

* Especially important for bacteria exhibiting high levels of antibiotic
resistance or virulence.

* Strain typing also has applications in studying bacterial population
dynamics.



Comparative Genomics
Approaches
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MUMmer v.04

RESEARCH ARTICLE
MUMmer4: A fast and versatile genome
* A bioinformatic tool used align and compare entire alignment system
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° Pros: updates
* Fastand efficient aligner Question answered using this tool:
* Optimal for comparing two related bacterial
strains “Whi
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literature (> 900 total citations; + 200 since genomes?
2018)
e Cons: This helps to identify uniqgue regions of the genome
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sporadic in E. coli.

compared to similar tools.



MUMmer v.04

Table 5. Performance of Nucmer4, BLASR and BWA MEM on data simulated by pbsim from human and Arabidopsis reference genomes. All numbers are percent-
ages from the total of bases that are in the reads aligned correctly, missed, or aligned incorrectly. The numbers may not add to exactly 100 due to rounding,

Arabidopsis Human
Aligned Correctly Aligned Incorrectly Aligned Correctly Missed Aligned Incorrectly
nucmers 94.0 2.5 84.4 10.9 4.6
blasr 98.2 1.7 91.8 5.0 3.2
bwa-mem 98.7 0.8 91.6 5.9 2.5

https://doi.org/10.1371/journal.pcbi.1005944.t005

* MUMmer’s sequence aligner feature called “nucmer4” was found to be less sensitive when reads were
aligned with BLASTR, nucmer4 and BWA to the corresponding reference genomes.
* Nucmer4 also has marginally higher FAR.

* The sensitivity numbers are consistent with the results on real data.
« MUMmer v4 has a feature ( ——maxmatch) that will account for this error at the expense of run time.



SNP Analysis

Single Nucleotide Polymorphisms are mutations with a
single DNA base substitution. When found in exonic
regions, they can result in amino acid variants in the
protein products or changes in protein length due to
their effects on stop codons.

Identification of SNPs across bacterial genomes is
important for outbreak tracking, phylogenetic
analysis and identifying strain differences that are
important to phenotypes such as virulence and
antibiotic resistance.

Main Objective: Identify SNPs and produce a
phylogenetic tree which will help us identify the
source and strain of the organism causing the
outbreak.

Figure: Whole-genome phylogenies of E. coli/Shigella (Sims et al., 2011)



SNP Analysis Tool Search

Tool Name Year Based On Advantages Disadvantages
kSNP v. 3.0 2015 K-mer Analysis Faster than multiple-alignment Cannot identify SNPs which are
and reference-based methods. close to each other
Has been tested on 68
genomes of E.coli
BactSNP 2019 De-novo Assembly and | Can be run without a reference Doesn’t produce phylogenetic
Alignment Information genome and has been trees
benchmarked against other
tools/pipelines for bacterial
genomes
ParSNP 2014 Multiple genome Designed for microbial Cannot handle subset data, only
alignment genomes. Avoids biases from works well for core genomes
mapping to a single reference | Not as sensitive as the other tools.
Should be used in combination
with a visualizer
RealPhy 2014 Multiple reference Avoids biases which come Requires a reference genome

sequence alignment

from using one reference
genome




kSNP3

Identifies all pan-genome SNPs in a set of given genome
sequences and estimates phylogenetic trees based upon
the identified SNPs.

SNP identification is based on k-mer analysis

kSNP builds Maximum Likelihood, Neighbor Joining and
Parsimony Phylogenetic trees

Doesn’t require a multiple sequence alignment or the
selection of a reference genome

SNPs are annotated from GenBank files.

PROS
® Has been tested on 68 finished E.coli genomes °
e Can efficiently analyze distantly-related °
genomes
® avoids biases stemming from the choice of a i

reference genome
e finds SNPs which are present in core and non-
core regions

©) @ ©) ®
. Remove k-mers with
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List canonical k- allele conflicts Merge sort
s k-mers from g
mers and counts for unassembled —> within a genome | —>| remaining k-mers
each genome from k-mer list for across genomes
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that genome |
N
e SN_P Vot !(— Find allele variant Find SNP position in Create SNP matrix and
mers with allelic o - 2
. —> | within each genome [ | finished genomes | .| puild trees (parsimony,
variation across . > : b
by comparing k-mer using MUMmer MJ, ML, core, majority
genomes lists in steps 5 and 3 fraction)
.
Cluster SNPs by Annotate SNPs
genome groups and with protein and
label tree nodes other Genbank
with allele counts information

Figure: Diagram of the kSNP process. (Gardner et al., 2013)

CONS

Cannot find SNPs that are too close to each other
Using a bigger k-mer size will compromise the
identification of high density SNPs

A smaller k-mer size could cause an increase in
allele conflicts

When using raw reads, the tool sometimes cannot
distinguish between true SNPs from sequencing
errors
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MLST: Multi Locus Sequence Typing

* Alow-resolution classification to categorize different clonal expressions of pathogens into broad
categories.

* The concept is based on allelic variation amongst highly conserved housekeeping genes (the schemes)

* The nomenclature is still widely used by clinicians and microbiologists

* There are bioinformatics tools that use raw sequence reads and others than use de novo assemblies.

« Three schemes available for Escherichia coli : Achtman,Pasteur, Whittam schemes (7:8:15)

*  PubMLST ONLY USES Achtman and Pasteur

Allele assignment ST assignment
PCR Sequencing via WWwWw via WWwWw
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MLST : Tool Comparison

MICROBIAL GENOMICS REVIEW MICROBIOLOGY
Page et al., Microbial Genomics 2017:3 ey

DOI 10.1099/mgen.0.000124

* DATA S MICROBIOLOGY

Comparison of classical multi-locus sequence typing software
for next-generation sequencing data

Andrew J. Page,’" Nabil-Fareed Alikhan,” Heather A. Carleton,® Torsten Seemann,” Jacqueline A. Keane® and
Lee S. Katz®®

Abstract

Multi-locus sequence typing (MLST) is a widely used method for categorizing bacteria. Increasingly, MLST is being performed
using next-generation sequencing (NGS) data by reference laboratories and for clinical diagnostics. Many software
applications have been developed to calculate sequence types fromm NGS data; however, there has been no comprehensive
review to date on these methods. We have compared eight of these applications against real and simulated data, and
present results on: (1) the accuracy of each method against traditional typing methods, (2) the performance on real outbreak
datasets, (3) the impact of contamination and varying depth of coverage, and (4) the computational resource requirements.

Tool comparison based on:

Database availability and updates

Disk Space

Time

Coverage/Quality of Query Sequence

Software/Dependency Management and Installation

Efficiency in mixed samples (Doesn’t apply in our case since we know we have isolates)
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TOOLS TO COMPARE

ARIBA
BigsDB
BioNumerics
EnteroBase
MOST

mlst
MLST-CGE
MLST-check
SeqSphere

. SRST2
. stringMLST

MentaLiST

. chewBBACA
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chewBBACA

A comprehensive pipeline for the creation and
validation of whole genome and core genome
MLST schemas

e Schema creation and allele calls are done on
complete or draft genomes resulting from de
novo assemblers
* The allele calling algorithm is based on

BLAST Score Ratio that can be run in
multiprocessor settings

 Performs allele calling in a matter of seconds
per strain

e Visualizes and evaluates allele variation in
the loci

ra

- Allele Schema
Calling ‘ Evaluation

Define - Define
Schema cgMLST wgMLST

Creation l l
Genomes — Allele
of |I Calling
Interest l

cg/wgMLST
allelic profile
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‘ Comparative Genomics ‘

v v
Whole Genome Gene Level SNP level ‘
| l | l l The Proposed
Preliminary
MUMIner Best of: Best of: ° °
v.04 Pipeline
ARIBA kSNP v. 3.0
stringMLST %Z‘;tgﬁlf
chewBBACA RealPhy
v

Analysis, Interpretation and Visualization
15
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Supplementary

Table 1. Overview of MLST software

Software Input Algorithm Licence Source Tests Installation Interface
ARIBA Reads Assembly GPL3 GitHub Yes Pip. Apt. Docker Command line
BigsDB [11] Contigs BLASTN GPLY GitHub No Manual Website
BioNumerics Reads/ contigs Proprictary/masms Bespoke Proprictary NA Manual Gul

EnteroBase Reads UBLAST/USEARCH NA NA NA NA Website

MOsT [14) Reads Mapping FreeBSD GitHub No Manual Command line
mist* Contigs BLASTN GPri2 GitHub No Brew Command line
MisToce [16) Contigs BLASTN Apache 2 Bitbucket No Docker Command lne/Website
MILST¢heck [17] Contigs BLASTN GPL3 GitHub Yes CPAN, Docker Command line
SeqSpheres [18) Contigs NA Bespoke Proprictary NA Manual Gu1

SRST2 (24) Reads Mapping BSD GitHub Yes Apt, pip Command line
stringMLST [21]) Reads k-mer Bespoke GitHub No Manual Command line

*nttps://github.com/tseemann/mist
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Table 2. Overview of the MLST databases available with each software Table 3. Summary of performance of each algorithm on real outbreak

application. data for four different species (85 samples)
Software Automated Bundled Age of DBs ready Software Total time Correct ST  No call/low confidence
download DBs bundled to use (min) (%) (%)
DEe ARIBA 109.5 98.8 12
ARIBA Yes 0 - Yes BioNumerics NA 100 0
BioNumerics Yes 0 _ Yes mlst* 1.9 (+2873) 96.5 35
mist Yes 125 1 month Yes MOSTT 1189.7 494 50.6
MLSTcheck Yes 0 - Yes MLSTcheck 63.8 (+2873) 100 0
SeqSphere+ NA 96.5 3.5
MOST No 6 >1 year Yes
SeaSoh Y 0 v SRST2 2380.2 95.3 4.7
+ -
eaphere © es stringMLST 80.8 100 0
SRST2 Yes 0 - Yes
stringMLST Yes 128 1 month Yes Values in bold indicate the best results in each column.
*The time to assemble with SPAdes before running the applications
DB, Database. was 2873 min and is included separately.
*The age of the bundled databases was calculated on the 15 tMosT identified the correct ST in 97.6 % of cases, but flagged 48.2 % of
March 2017. these calls as low confidence.

18



5001  Software ..’
D
6 - mist
- MLSTcheck '.'
> . 4004 = wom .
! 3 - . 5512 e
I3 . o rngMLST o
M :‘ : ' ? .‘.‘.
1 4 !f : I o 300 o
= I H A\' g - "
| ] A . i
g !; if v 2 on [
] ] Software 5 200 1 o -
- / = ANSA ) 'o" /.0'
2 2< - ' - meal"u"m ‘- "’
- MLSTcheck : -
I - MOST 1009 ,..'
I3 « SeqSphere+ PRy
- 812 1
- = stiingMLST W
o 04 secsenae A A A A LR ITTATIVIVI 3w
o % 0 10 20 30
Coverage x

Fig. 1. Number of correct calls of each applcation as coverage
increases. Each ST consists of seven alleles. and all seven must be
correctly and confidently called to calculate a ST.

Fig. 2. Running time (s) of each application as the coverage increases
to assess the impact of the depth of coverage. No assembled contigu-
ous sequences could be generated where the coverage was less than
7x, as such no data was recorded for the reliant methods (mist and

MLSTcheck). No performance results are availadle for BioNumerics or

SeqSpheres.
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Fig. 3. Disk space requirements in bytes for each software application
as the depth of coverage increases. Due to the large difference
between applications, a log scale is used.




stringMLST
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MOST | .
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Fig. 4. STs called by each software application when given data con-
taining two different Salmonella samples in varying ratios of abun-
dance. Where there is no ST called, or where the ST has any
ambiguity at all, it is marked as low confidence. A false positive is
where an ST is called with high confidence and is not one of the two
samples in the raw data.
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