National Center for Emerging and Zoonotic Infectious Diseases

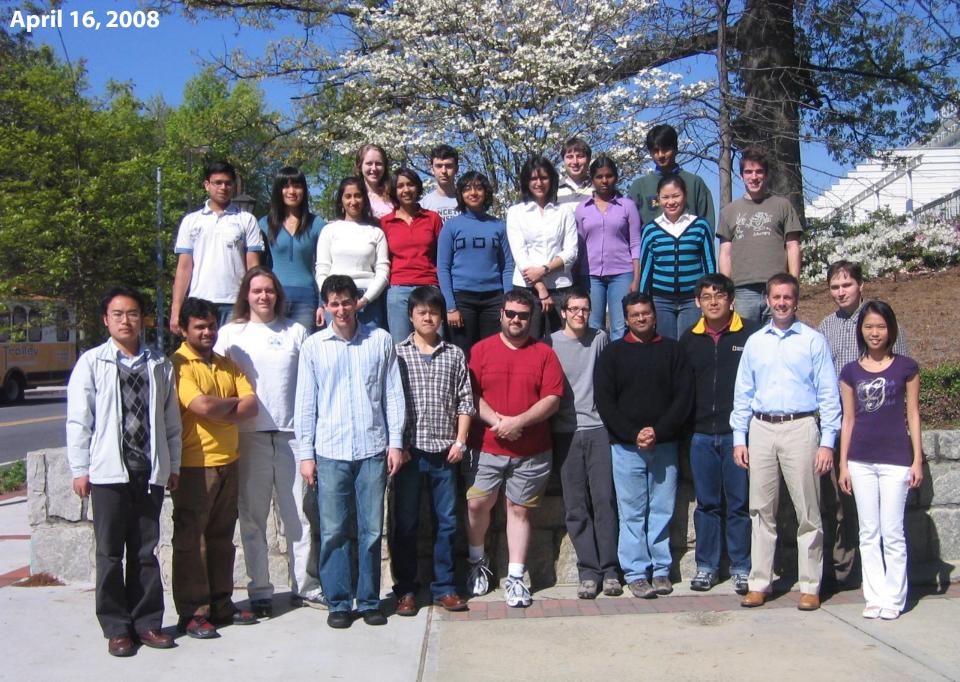
Genomic Epidemiology

Lee Katz, Ph.D.

Senior bioinformatician Enteric Diseases Laboratory Branch

Computational Genomics course Feb 11, 2020

Acknowledgements up front

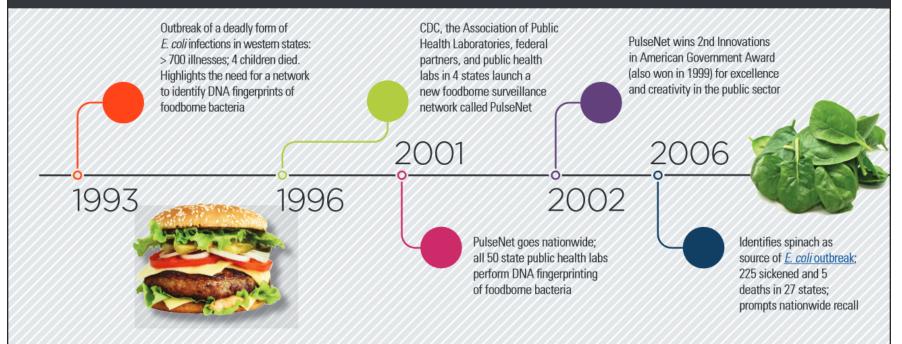

- Every single compgenomics class since 2008
- My branch at CDC
- Federal partners
- State partners

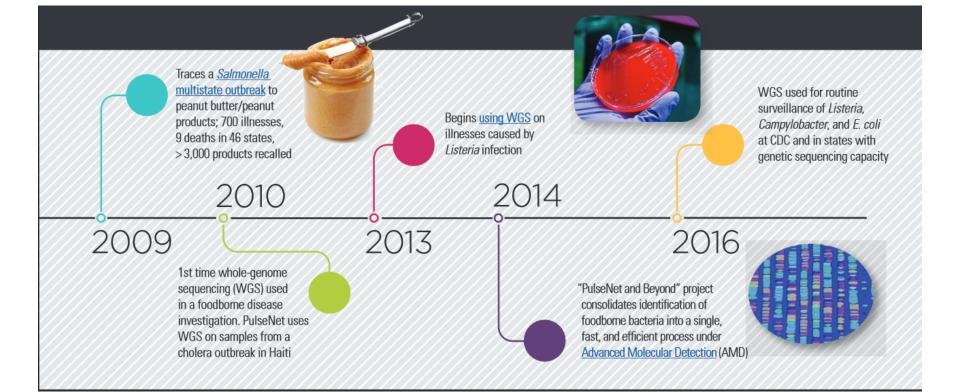
Enteric Diseases Laboratory Branch (EDLB)

Food Safety Informatics Group, Center for Food Safety, University of Georgia

Enteric Diseases Bioinformatics Team (EDBiT)

http://www.compgenomics.biology.gatech.edu/index.php/Group_photos


April 23, 2008


Enteric Diseases Laboratory Branch

7

2011 to present Vibrio, Campylobacter, Escherichia, Shigella, Yersinia, Salmonella

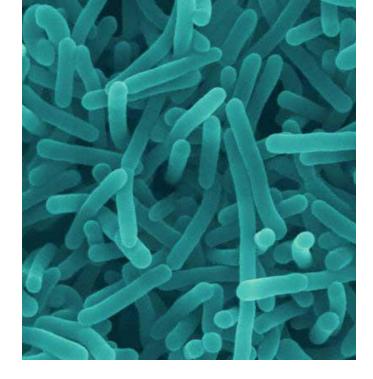
PulseNet's 20-year history of making food safer to eat

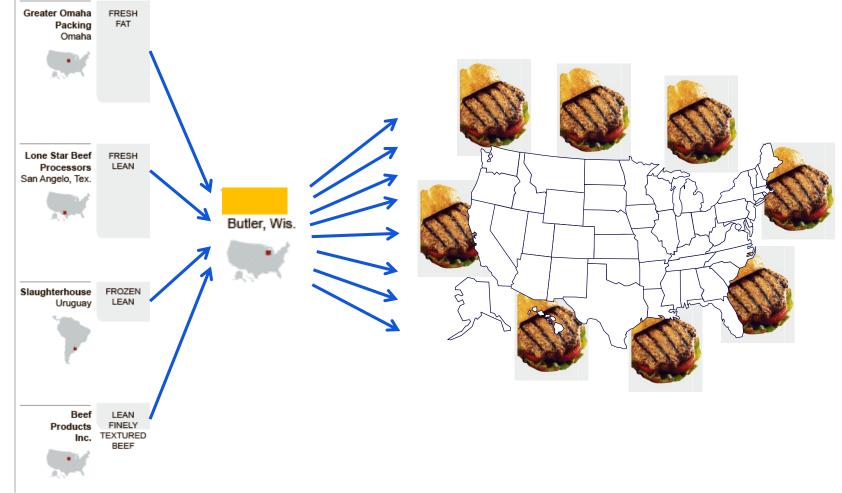
Outline

- Background
- Genomic Epidemiology
 - Algorithms
 - Software
- Example

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

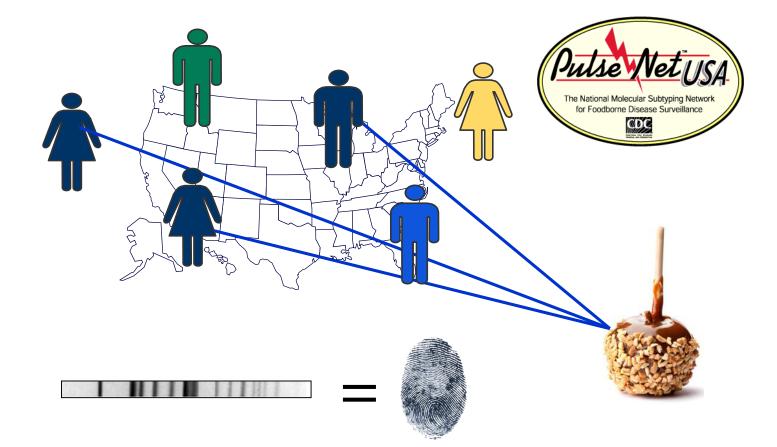
Listeria pilot project


As told from a bioinformatician's perspective

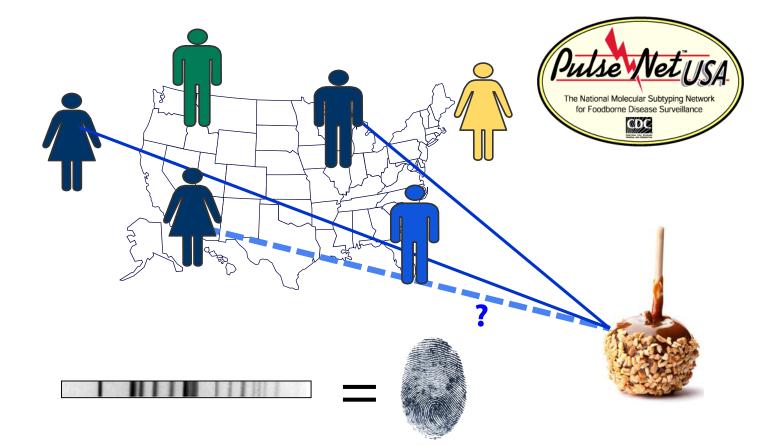

(It's an awesome perspective)

Why Listeria monocytogenes?

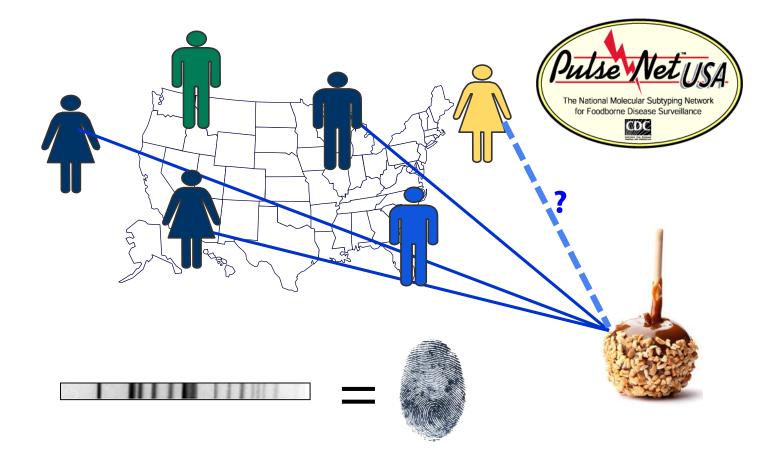
- Illness is rare but serious, costly, and commonly outbreak associated
 - Estimated \$2.8 billion in annual medical costs and lost productivity (\$1.8 million/case)
- Current subtyping methods are not ideal
- Strong epidemiologic surveillance (Listeria Initiative)
- Strong regulatory component
- Listeria genome is fairly small, stable, and relatively easy to sequence and analyze. Most changes in the genome are due to point mutations and not phages.

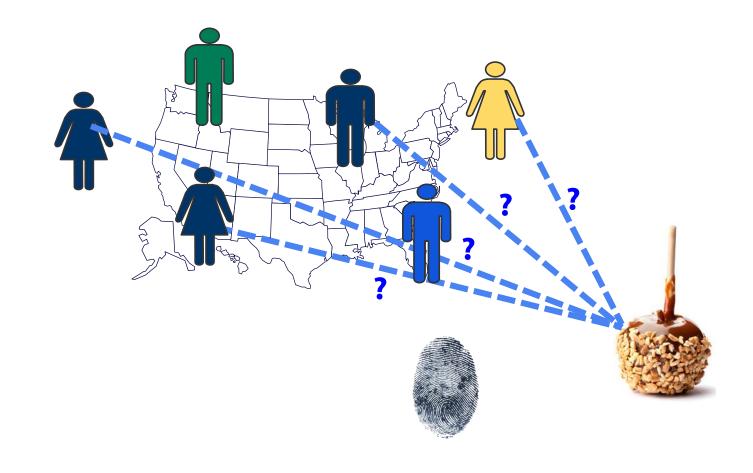


The Problem: Detecting Outbreaks in an Increasingly Globalized Food System

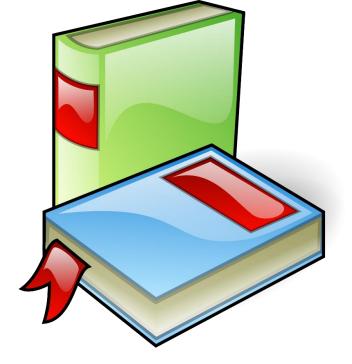


Anatomy of a Burger. New York Times. October 4, 2009 Thanks to Brendan Jackson for letting me borrow this slide


Limitations of Pulsed-Field Gel Electrophoresis (PFGE)


Limitation: Genetically Unrelated Isolate Might Appear Same by PFGE

Limitation: Genetically Related Isolate Might Appear Different By PFGE


Can genomics clear up this picture?

How do we compare genomes?

Three major methods we use

- Kmer-based: mile-high view (shredded paper)
- MLST-based: naked eye (book pages)
- SNP-based: microscope (book letters)
- The question in this analogy: how similar are these two books?

kmers

- Kmer: a length of DNA k nucleotides long
- 1. Shred all reads in equal sizes k
- 2. How many kmers are in common?
- 3. Transform into a percentage **

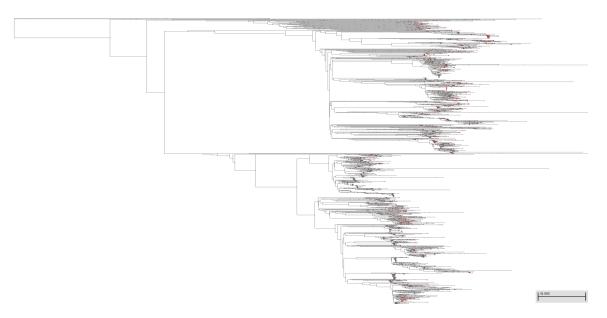
Image credits: "DEATH OF A SHREDDER" https://digginginthedriftless.com/2011/01/04/deathof-a-shredder


****** Known as the jaccard distance

Kmers, jaccard distance

СААААААААААТ

СААААААААААА


Here, K=12

Two out of four kmers different; Jaccard distance = 2/4 = 0.5

Example kmer tree

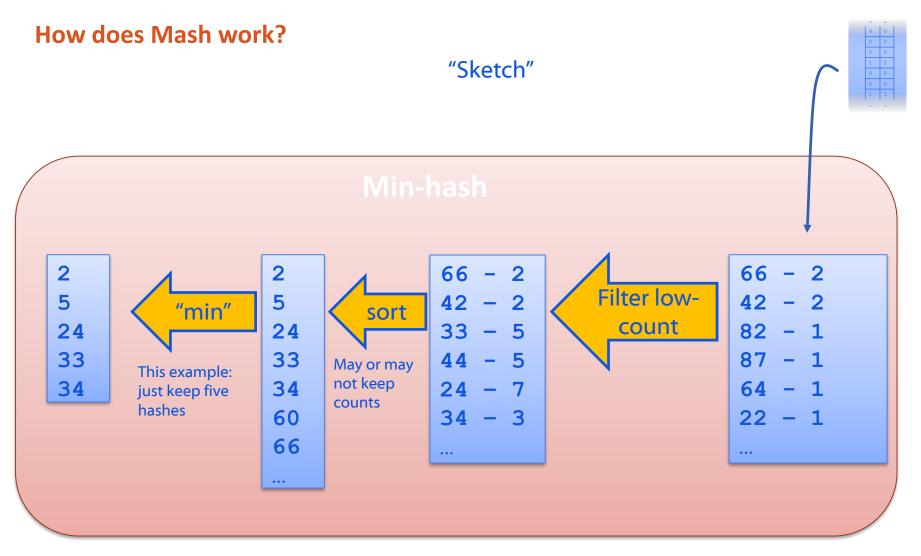
- http://www.ncbi.nlm.nih.gov/pathogens/
- Software: pathogen detection pipeline at NCBI

Mile-high view 7,800 *Listeria monocytogenes* genomes in this tree

Kmer-based software


- NCBI Pathogen Detection Pipeline
 - Not available for individual use, but the results are comprehensive and public
- Mashtree
 - Based on min-hash, implemented in Mash
- SKA
 - Split Kmer Analysis

🗲 🛈 www.ncbi.nlm. nił 🛛 🗉	⊐ C	Q Search		☆自≫	
Isolates by Organism T	уре				
Organism Group	All	New Isolates	Clinical	Environmental	
Salmonella	<u>51025</u>	<u>63</u>	21755	29270	
Escherichia_coli_Shigella	<u>18986</u>	<u>61</u>	<u>12855</u>	<u>6131</u>	
<u>Listeria</u>	<u>11039</u>	<u>8</u>	<u>2938</u>	<u>8101</u>	
<u>Campylobacter</u>	<u>3781</u>	<u>128</u>	<u>1687</u>	<u>2094</u>	
Acinetobacter	<u>2588</u>	<u>0</u>	<u>1819</u>	<u>769</u>	
<u>Klebsiella</u>	<u>2125</u>	<u>5</u>	<u>1583</u>	<u>542</u>	
Vibrio_parahaemolyticus	<u>798</u>	<u>131</u>	<u>349</u>	<u>449</u>	
<u>Serratia</u>	<u>357</u>	<u>12</u>	<u>107</u>	<u>250</u>	
<u>Elizabethkingia</u>	<u>97</u>	1	<u>83</u>	<u>14</u>	
Providencia	77	1	<u>63</u>	<u>14</u>	

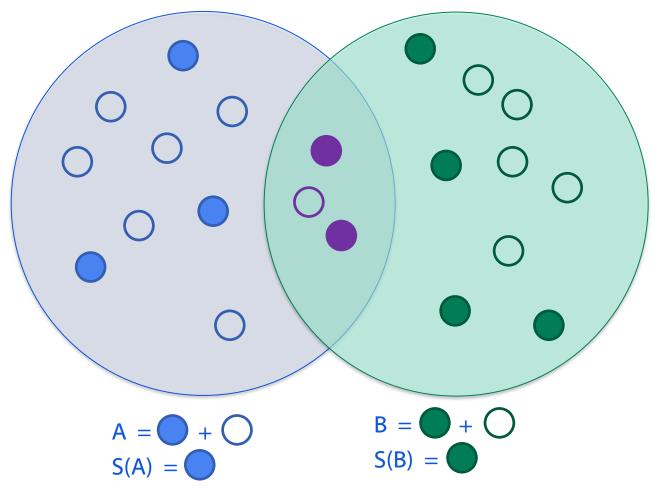

NCBI kmer trees screen shot taken Sept 23, 2016 https://www.ncbi.nlm.nih.gov/pathogens https://github.com/lskatz/mashtree (latest version: 1.0.4; Katz et al 2019, JOSS) https://github.com/simonrharris/SKA/releases (latest version: 1.0)

How does Mash work?

"Sketch"

Ondov et al, "Mash", Genome Biology. http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0997-x

Ondov et al, "Mash", Genome Biology. http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0997-x


How does Mash work?

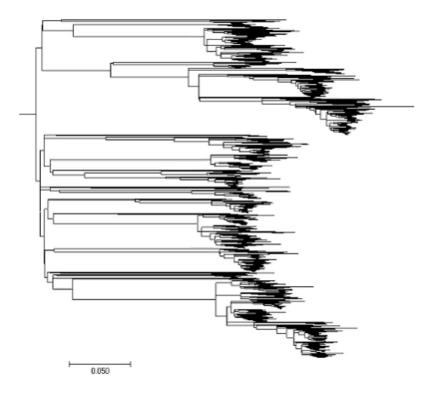
"Distance" or "dist"

Ondov et al, "Mash", Genome Biology. http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0997-x

Min-hash visualization

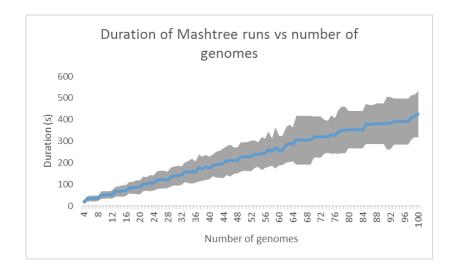
Mashtree

What it is and what it isn't


ls	lsn't
Builds trees	Infers phylogeny
Fast	Slow

When to use it

Use it when	Don't use it when
Need fast estimate	Need solid results
Need to know a good reference genome	Inferring phylogenetic relatedness
Large, diverse dataset	Not diverse or not large dataset


Mashtree is fast

- I had a tree of > 1500 genomes and ran Mashtree on the genomes of every clade with fewer than 101 taxa.
- The forward Illumina read of every genome was analyzed.
- Grey shading indicates the range of durations. (next slide)

Mashtree is fast

- I had a tree of > 1500 genomes and ran Mashtree on the genomes of every clade with fewer than 101 taxa.
- The forward Illumina read of every genome was analyzed.
- Grey shading indicates the range of durations.

The Mashtree v0.06 accuracy

59-3141 contigs

Sn = 78%

Sp = 100%

23-46 contigs

Sn = 100%

Sp = 97%

1409MLJN6-1 $n_{pos} = 9$ $n_{neg} = 29$ Dataset from *Katz et al*, "Lyve-SET", 2017, MGEN

part of outbreak

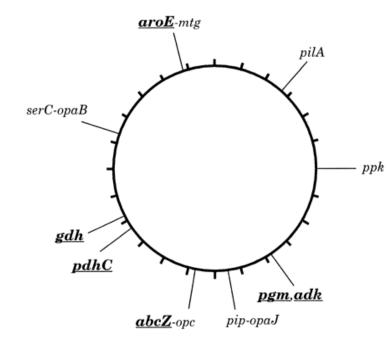
Mash v0.06 Raw reads min_depth: 5x Sn = 100% Sp = 97%

Mashtree is command line

```
# Installation
$ cpanm -L ~ Mashtree
$ export PERL5LIB=$PERL5LIB:$HOME/lib/perl5
# Usage
$ mashtree.pl --help
# Execution
$ mashtree.pl --numcpus 12 --genomesize 4700000 \
*.fastq.gz \
[*.fasta] [*.gbk] [*.fasta.gz] [*.gbk.gz] \
> mashtree.dnd
```

MLST

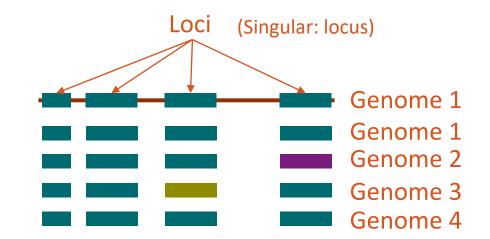
- MLST: multilocus sequence typing
- Locus: a place in a genome. Plural: loci
- Identify a set of loci (genes) in the genome
- Compare each locus in a genome against the set of loci
- Count differences and the number of loci compared

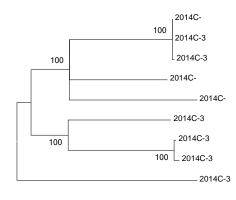

Different kinds

- 7-gene MLST
- wgMLST (whole genome MLST)
- cgMLST (core genome MLST)
- ... and more

Image credit: Wikipedia.org Software: BioNumerics

7-gene MLST

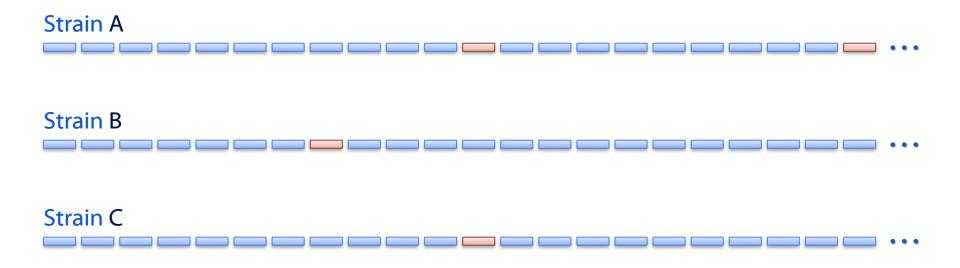

- Choose about seven loci in the genome
- Compare all genomes based on these seven loci
- This profile of alleles is called a sequence type (ST)



Maiden et al 1998 PNAS

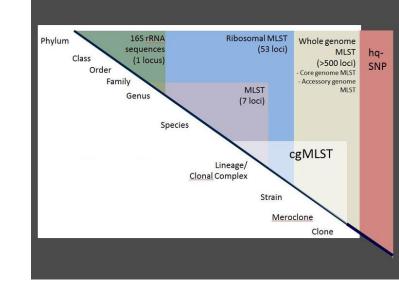
Animation of MLST

- 0. Assemble the genome
- 1. Identify the loci
- 2. Call alleles
- 3. Compare with other genomes and their alleles
- 4. Create a phylogeny
- Note: many methods do not require an assembly and these are called assembly-free methods.


0.001

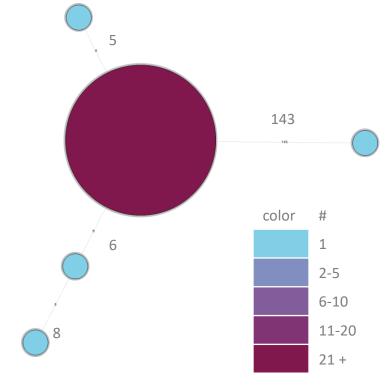
Whole-genome MLST

~one locus per 1,000 nucleotides (nt) in the genome.


Different species have different sizes

e.g., L. monocytogenes has ~3,000,000 nt and ~3,000 loci

Flavors of multilocus sequence type analysis


- Subsets of genes can be used to identify genus/species and lineage (rMLST/ MLST)
- Core genome MLST are the genes that are in common in vast majority of genomes belonging to a genus species (for Listeria – 1748 genes belong to core and are present in ~98% of isolates tested)

Maiden et al Nat Rev Microbiol. 2013 11:728-36

Example wgMLST tree

- Larger circles represent more with the same sequence type (ST)
- 4800 loci represented
- Distances shown on the connecting lines
- The style of tree shown is called a minimum spanning tree
- wgMLST can also be displayed in a conventional tree

MLST software

- StringMLST
 - Compare kmers of raw reads against a database
- BioNumerics
 - Graphical user interface
- SRST2, Ariba
 - Map raw reads onto database
- mlst
 - BLAST genome assembly against database
- Mentalist
 - Command line, meant for wgMLST schemes

Image taken from http://www.appliedmaths.com/applications/wgmlst For more information: Page et al 2017, "Comparison of Multi-locus Sequence Typing software for next generation sequencing data."

MLST Resources

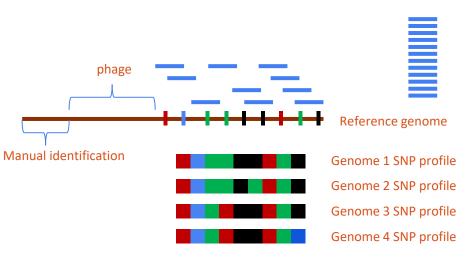
- Main MLST site: https://pubmlst.org/
- BigsDB manual: <u>http://bigsdb.readthedocs.i</u> <u>o/en/latest/concepts.html</u>
- API: <u>https://pubmlst.org/rest/</u>
- Also see:
 - <u>https://enterobase.warwick.a</u>
 <u>c.uk/</u>
 - <u>http://bigsdb.web.pasteur.fr/l</u> <u>isteria/</u>

÷)→ሮ (◎≞∪	niversity of Oxford (GB) https://pubmlst.org/databases/	♥☆		
ibMLST Databases Downloads B	IGSdb Contact Site map	Google Custom Search Search		
Databases hosted on Publ	MLST			
These databases host MLST schemes	and isolate data, increasingly including whole genome sequ	uences.		
Bacteria				
Achromobacter	Helicobacter cinaedi	Sinorhizobium spp.		
 Acinetobacter baumannii 	Helicobacter pylori	Staphylococcus aureus		
 Aeromonas spp. 	Helicobacter suis	Staphylococcus epidermidis		
 Anaplasma phagocytophilum 	 Klebsiella aerogenes 	Staphylococcus haemolyticus		
 Arcobacter spp. 	 Klebsiella oxytoca 	Staphylococcus hominis		
 Bacillus cereus 	 Lactobacillus salivarius 	Staphylococcus pseudintermedius		
 Bacillus licheniformis 	 Leptospira spp. 	 Stenotrophomonas maltophilia 		
 Bacillus subtilis 	Macrococcus canis	Streptococcus agalactiae		
 Bordetella spp. 	 Macrococcus caseolyticus 	Streptococcus bovis/equinus complex		
 Borrelia spp. 	 Mannheimia haemolytica 	Streptococcus canis		
 Bartonella bacilliformis 	Melissococcus plutonius	Streptococcus dysgalactiae		
 Bartonella henselae 	 Mycobacteria spp. 	Streptococcus gallolyticus		
 Brachyspira spp. 	 Mycobacterium abscessus complex 	Streptococcus pneumoniae		
 Brucella spp. 	 Mycoplasma agalactiae 	Streptococcus pyogenes		
 Burkholderia cepacia complex 	 Mycoplasma bovis 	Streptococcus suis		
 Burkholderia pseudomallei 	 Mycoplasma hyopneumoniae 	Streptococcus thermophilus		
 Campylobacter spp. 	 Mycoplasma hyorhinis 	Streptococcus uberis		
 Carnobacterium maltaromaticui 	m • Mycoplasma iowae	Streptococcus zooepidemicus		
 Chlamydiales spp. 	Mycoplasma pneumoniae	Streptomyces spp.		
Citrobacter freundii	 Mycoplasma synoviae 	Taylorella spp.		
 Clostridium botulinum 	Neisseria spp.	Tenacibaculum spp.		
Clostridium difficile	 Oral Streptococcus spp. 	Vibrio spp.		
 Clostridium septicum 	Orientia tsutsugamushi	Vibrio cholerae		

databa:	ses:
• {	
	<pre>href: http://rest.pubmlst.org/db/pubmlst campylobacter isolates,</pre>
	<pre>name: "pubmlst_campylobacter_isolates",</pre>
	description: "Campylobacter jejuni isolates"
3,	
• {	
	href: http://rest.pubmlst.org/db/pubmlst campylobacter nonjejuni isolates,
	name: "pubmlst campylobacter nonjejuni isolates",
	description: "Campylobacter non-jejuni/coli isolates"
},	
. (
	href: http://rest.pubmlst.org/db/pubmlst campylobacter nonjejuni seqdef,
	name: "pubmlst campylobacter nonjejuni seqdef",
	description: "Campylobacter non-jejuni/coli sequence/profile definitions"
},	
• {	
1.00	href: http://rest.pubmlst.org/db/pubmlst campylobacter seqdef,
	name: "pubmlst campylobacter segdef",
	description: "Campylobacter jejuni/coli sequence/profile definitions"
3	
1,	
	"campylobacter",
	ption: "Campylobacter spp."

- Jolley & Maiden 2010, BMC Bioinformatics 11:595
- Jolley et al. (2017) Database 2017: bax060

SNPs


- Compare individual letters in a query genome against the reference genome
- hqSNP: high-quality SNP (ie, high confidence)
- hqSNP indicates some high threshold, e.g.,
- 10x coverage
- 75% consensus

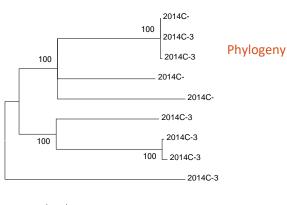
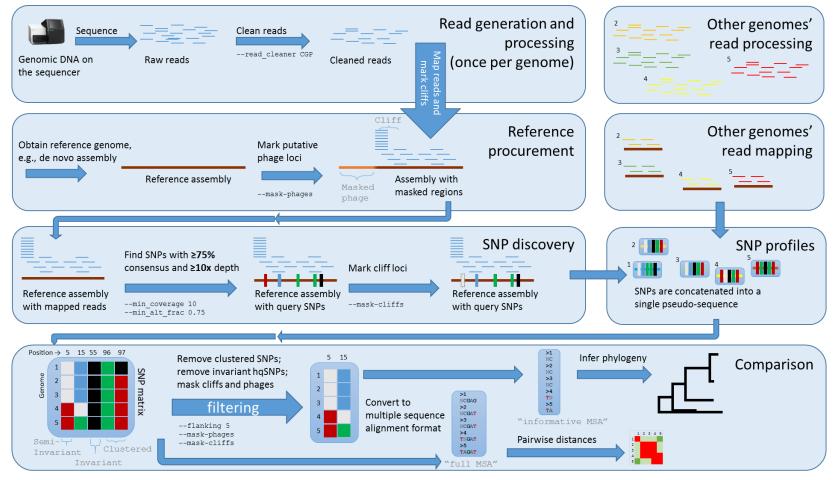


Image taken from geneious.com

SNP analysis

- 0. Pre-processing
 - a) Identification of troublesome regions
 - b) Read cleaning
- 1. Mapping
- 2. SNP calling
 - a) % consensus
 - b) x depth
 - c) Other filters
- 3. Phylogeny inference



https://github.com/lskatz/lyve-SET Katz et al. (2017) A comparative analysis of the Lyve-SET phylogenomics pipeline for genomic epidemiology for foodborne pathogens. Frontiers in Microbiology 8: 375.

0.001

More details

https://github.com/lskatz/lyve-SET

Katz et al. (2017) A comparative analysis of the Lyve-SET phylogenomics pipeline for genomic epidemiology for foodborne pathogens. Frontiers in Microbiology 8: 375.

SNP software

- Lyve-SET
 - Optimized for outbreak surveillance.
- SNP-Pipeline
 - FDA SNP pipeline. Optimized for regulatory workflow. Optimized for speed and accuracy of SNPs.
- SNVPhyl
 - Public Health Agency of Canada. Graphical User Interface in Galaxy.

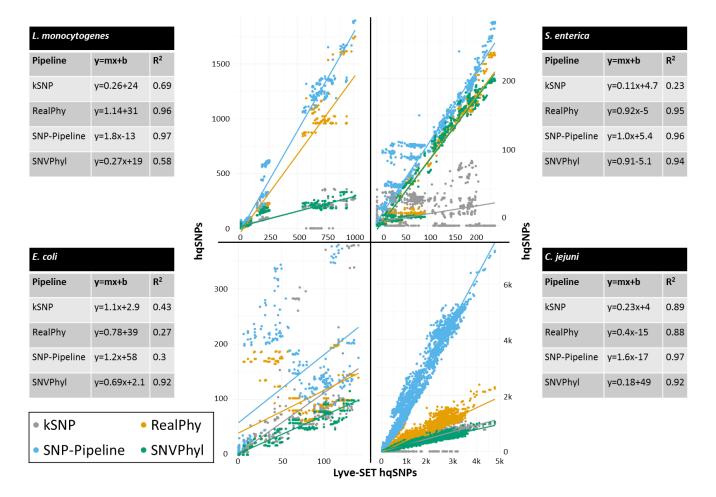
Each bioinformatician to have their own personal short-read aligner by 2016

Posted on March 23, 2015 by jovialscientist

OXFORD, UK. The Bioinformatics Society ("BS" for short) have declared that they will reach their aim of every bioinformatician having their own personal short-read aligner by the end of 2016, *The ScienceWeb* have learned.

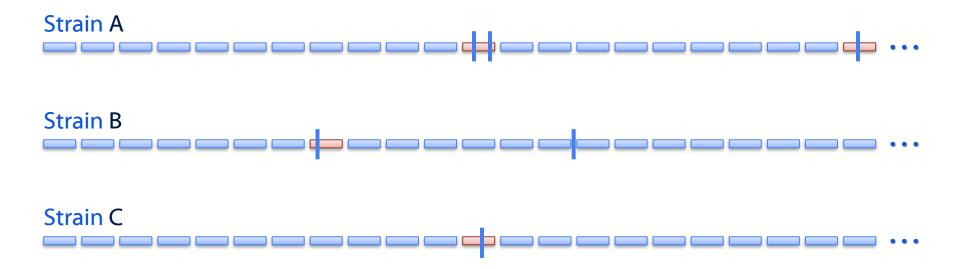
There are approximately 28,362 scientists globally who identify themselves as being "bioinformaticians" or "computational biologists" (those who identify themselves as "bioinformagicians" have been excluded – not just from this analysis, but from life in general). A recent survey of short-read aligners identified 23,872 different software tools, all of which basically do the same thing.

"We're almost there!" exclaimed base-pair hyper-bot Hang Li from the Broad Institute. "As soon as I published that paper on the Ferris Bueller transform, I knew the field would take off! And it has – we have one valuable publication and 23,871 incremental improvements" finished the Hang Li AI, a 7-dimensional intelligence that exists only in the minimal amount of memory need to represent a human.

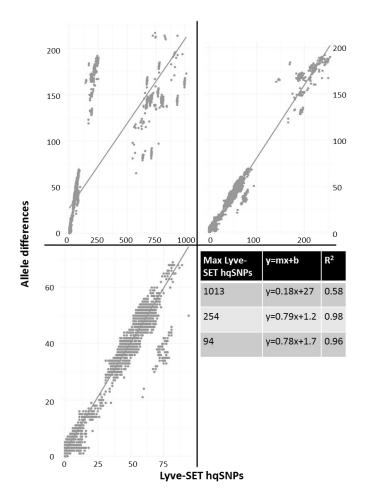

The field of bioinformatics sequence analysis has been criticised by other areas of science for basically solving the same 3 problems over and over again, sometimes with only a marginal improvement and often with a marked deterioration in quality.

https://thescienceweb.wordpress.com/ 2015/03/23/each-bioinformatician-tohave-their-own-personal-short-readaligner-by-2016/

Installation and sample run


```
cd ~/bin/
$
$
    git clone https://github.com/lskatz/lyve-SET
    cd Lyve-SET
$
$
   git checkout v1.1.4f
$
   make install
   export PATH=$PATH:~/bin/lyve-SET/scripts
$
   You may also add this to your bash profile
   echo >> ~/.bash profile "export PATH=$PATH:~/bin/lyve-SET/scripts"
$
$
   which launch set.pl
$
    set test.pl lambda lambda --numcpus 4
# Takes about two minutes
    ls lambda/msa/tree.dnd
$
```

Comparison of Lyve-SET with other SNP pipelines



Each data point is a SNP distance as determined by Lyve-SET (x-axis) and the distance of an alternative SNP pipeline (y-axis). The slope indicates the number of SNPs per Lyve-SET SNP.

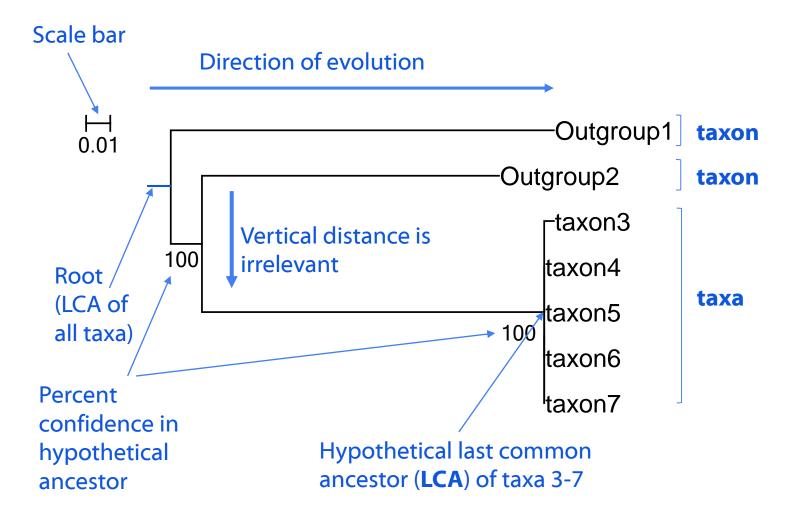
SNPs overlayed on MLST loci

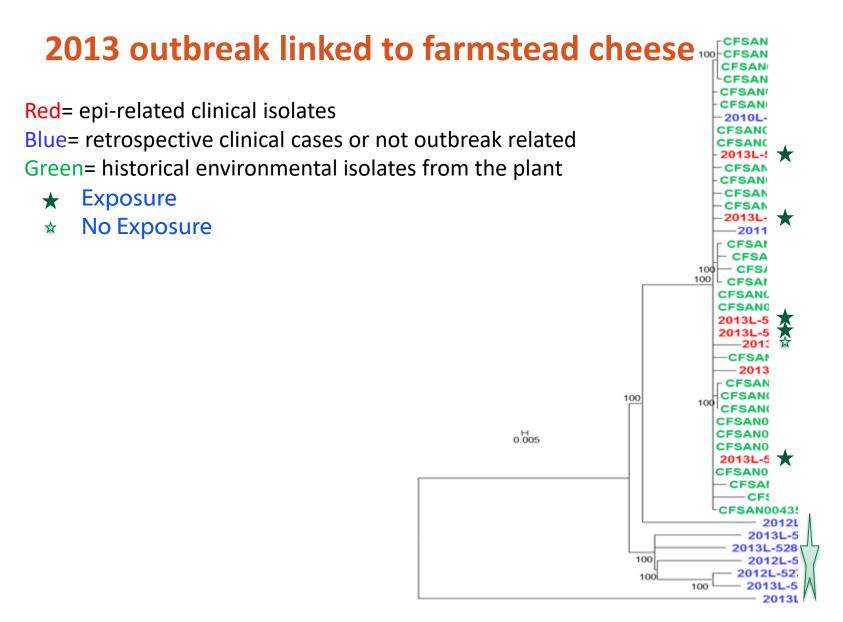
Comparison with whole-genome MLST (Listeria monocytogenes only)

Katz et al 2017, Lyve-SET, Frontiers in Microbiology.

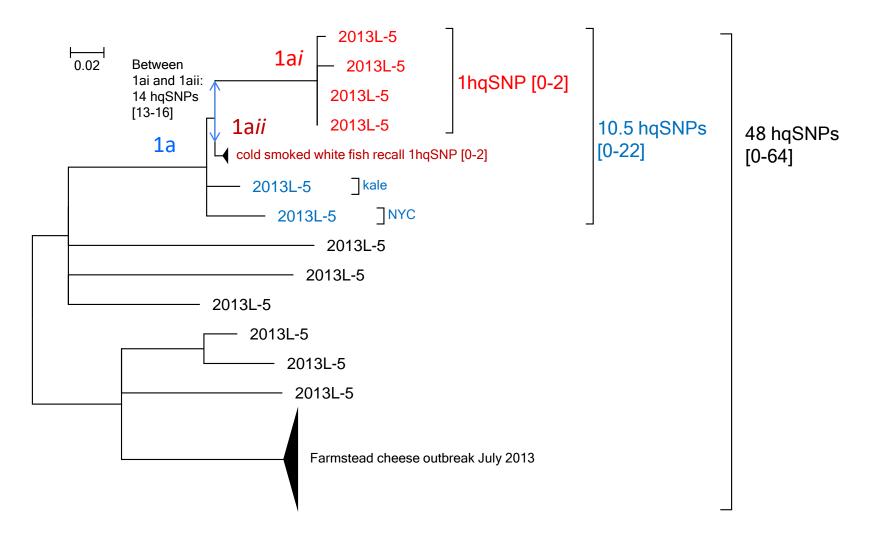
Which algorithm should you use?

	Kmer-based	wgMLST	hqSNP
Diversity	$\checkmark\checkmark$	\checkmark	××
Outbreak-level resolution	×	\checkmark	\checkmark
Further genomic information	×	✓	\checkmark
Minimal upfront effort	✓	××	\checkmark
Fast	$\checkmark\checkmark$	$\checkmark\checkmark$	×
Easy to use for anyone	×	\checkmark	×


Fun examples


More information can be found in the virtual lab talk given on Jan 7, 2019: https://youtu.be/YPnU63Le53Y?t=1234

Multistate outbreak of farmstead cheeses


	r Disease Control and Prevention ng Lives. Protecting People.™		SEARCH
A-Z Index A B C D E F	<u>GHIJKLMNOPQRSIUVWXYZ</u> #		
Listeria (Listerio	sis)		
Listeria (Listeriosis) Definition & Symptoms Outbreaks Crave Brothers	Listeria (Listeriosis) > Outbreaks ■Recommend (6) Tweet (1) Share		Email page link Print page Get email updates
Farmstead Cheeses Recall & Advice to Consumers Case Count Maps Epi Curves Signs & Symptoms Key Resources Surveillance	Multistate Outbreak of Listeriosis Linked to Crave Brothers Farmstead Cheeses (Final Update) Posted September 24, 2013 1:00 PM ET This outbreak appears to be over. <i>Listeria monocytogenes</i> infection (listeriosis) is an important cause of illness in the United States. More information about listeriosis, and steps people can take to reduce their risk of infection, can be found on the CDC <i>Listeria</i> Web Page.		Get email updates To receive email updates about this page, enter your email address: <u>what's this?</u> Submit
Surveillance Statistics People at Risk Prevention Sources of Infection Diagnosis & Testing Treatment & Outcomes Educational Resources Publications Related Links Multistate Foodborne Outbreaks CDC's Role CDC and Food Safety Investigating	Highlights • Read the Advice to Consumers & Cheese Retailers» • A total of six persons infected with the outbreak strain of <i>Listeria monocytogenes</i> were reported from five states. • The number of ill persons identified in each state was as follows: Illinois (1), Indiana (1), Minnesota (2), Ohio (1), and Texas (1). • All six ill persons were hospitalized. One death was reported in Minnesota. In addition, one illness in a pregnant woman resulted in a miscarriage. • No new ill persons were reported since the last update on August 22, 2013. • A collaborative investigation by local and state public health and regulatory agencies, CDC, and the U.S. Food and Drug Administration (FDA) indicated that Les	At a Glance: • Case Count: <u>6</u> • States: <u>5</u> • Deaths: 1 • Hospitalizations: 6 • Recall: <u>Yes</u> More Information: • <u>Recall & Advice to</u> <u>Consumers</u> • <u>Sians & Symptoms</u> • <u>Key Resources</u>	Contact Us: Control and Prevention 1600 Clifton Rd Atlanta, GA 30333 Control and Prevention 1600 Clifton Rd Atlanta, GA 30333 800-232-4636) TTY: (888) 232-6348 New Hours of Operation 8am-8pm ET/Monday-Friday Closed Holidays Closed Holidays

How to read a phylogeny

Phylogenetically related outbreak of unknown etiology, December 2013

In conclusion

- WGS provides high resolution
- We have many tools for differing levels of resolution
- We can and have used it on outbreak investigations

Micro Binfie Podcast

sten on Apple

Your Hosts

Lee Katz (CDC) Andrew Page (QIB) Nabil Alikhan (QIB)

Microbial Bioinformatics is a rapidly changing field marrying computer science and microbiology. Join us as we share some tips and tricks we've learnt over the years.

If you're getting to grips to the field, or someone who wants to keep tabs on the latest and greatest - this podcast is for you.

Most popular tracks

- 1. Writing good bioinformatics software with Torsten Seemann
- 2. Wham BAM, thank you SAM
- 3. History of Genotyping
- 4. History of File Formats
- 5. Nobel Prize or Contamination

LISTEN ON Spotify

RSS

Questions?

Lee Katz
A gzu2@cdc.gov

✓ lskatz
✓ github.com/lskatz

College of Agricultural & Environmental Sciences Center for Food Safety UNIVERSITY OF GEORGIA

National Center for Emerging and Zoonotic Infectious Diseases Division of Foodborne, Waterborne, and Environmental Diseases